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Course overview

» Continuous vs. discrete processes,

» Fields vs. objects,

» Temporal processes vs. spatial processes, or full

vV v v Y

spatio-temporal processes,

Stochastic vs. deterministic

Measurement-based vs. differential equations-based modelling,
Spatial and temporal “scale” (extent, support, resolution)

Application domain (inner earth, rock, soil, groundwater,
surface water, terrain, atmosphere, outer space)

are relationships studied spatial (PMyg), temporal,
cross-domain (PMyg in relation to traffic), or some
combination?
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Domain — interest poll
Spatio-temporal modelling is a large subject.
» geology/geophysics
» hydrology

» ground water dynamics
» rainfall-runoff modelling
» ecology
» plant/species dynamics
> species associations, biodiversity
» cause-effects, dose-response
> paleo time scales (climate records)

» natural hazards
> people:
> spatial planning
» demography
» environmental health assessment (air quality)
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Point of departure — where are we?

What is
correlation, covariance
t-test

v

linear regression, ANOVA
95% confidence interval

spatial correlation, temporal correlation

>
>
>
>
» time domain vs. frequency domain modelling
> kriging

» |east squares solution, normal equations

» a partial differential equation

»

a Kalman filter
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Aims of modelling
. could be
it is good fun

studying models is easier than studying the world around us

>
>

» they live mostly in computers

» there are so many different models
»

models really use my CPU
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Aims of modelling

. could be
> it is good fun

» studying models is easier than studying the world around us
» they live mostly in computers

>

there are so many different models

v

models really use my CPU
Scientific aims of modelling are
» to learn about the world around us

» to predict the past, current or future, in case where
measurement is not feasible.
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What is a model?

» conceptual models
» object models (e.g., UML)

» mathematical models
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What is a mathematical model?

A mathematical model is an abstract model that uses
mathematical language to describe the behaviour of a system.
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What is a mathematical model?

A mathematical model is an abstract model that uses
mathematical language to describe the behaviour of a system.

a representation of the essential aspects of an existing system (or a
system to be constructed) which presents knowledge of that
system in usable form (P. Eykhoff, 1974, System Identification, J.
Wiley, London.)
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What is a mathematical model?

A mathematical model is an abstract model that uses
mathematical language to describe the behaviour of a system.

a representation of the essential aspects of an existing system (or a
system to be constructed) which presents knowledge of that
system in usable form (P. Eykhoff, 1974, System Identification, J.
Wiley, London.)

In the natural sciences, a model is always an approximation, a
simplification of reality. If degree of approximation meets the
required accuracy, the model is useful, or valid (of value). A
validated model does not imply that the model is “true”; more
than one model can be valid at the same time.
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What may follow?

(In no particular order)
» simple models, e.g. cascade models
» models that have coupled equations; differential equations

» models built on random processes, e.g. Gaussian dispersion
models

» modelling data: time series modelling, models using spatial
correlation

» model bias, and spatio-temporal bias correction

» finding model parameters: model calibration, inverse
modelling

» combining models and measurements: kalman filtering

(not necessarily in this order)
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Time series models

We will first look into time series models, because they are
> simple
> easy to write down

» well understood

Time series models are roughly divided in (a) time domain models
and (b) frequency domain models. Time domain models look at
correlations and memory, frequency domain concentrate on
periodicities. Spatial equivalents is mostly found in (a).

Edzer J. Pebesma
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Consider the following process (At = 1 min):
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Questions

» how can we describe this process in statistical terms?
» how can we model this process?

> (how) can we predict future observations?
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White noise, AR(n)

Perhaps the simplest ts model is white noise with mean m:
Yt = m+et, €t N(O,O’2)

N(0,0?) denoting the normal distribution with mean 0 and
variance 2, and ~ meaning “distributed as” or “coming from".

A white noise process is completely without memory: each
observation is independent from its past or future. We can look at
the auto-correlation function of a white noise process, and find it is
uncorrelated:
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Series rnorm(1000)
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Autocorrelation

Autocorrelation (or lagged correlation) is the correlation between
y; and y;+p, with A the lag:

) — it Wi = D) (ien — 9)
== - 07

with j = % > Y
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Random walk

A simple, next model to look at is that of Random walk, where
each time step a change is made according to a white noise
process:

Yt = Yt—1 T €
Such a process has memory, and long-range correlation. If we take

the first-order differences,

Yt — Yi—1 = €

we obtain the white noise process.
Further, the variance of the process increases with increasing
domain (i.e., it is non-stationary)
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Example random walk:

We can compute it as the cumulative sum of standard normal
deviates: y, = > i, e;
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MA(1), MA(q)

Let e; be a white noise process. A moving average process of order
q is generated by

Y = Boer + Bre—1 + ... + Byei—q
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AR(1), AR(p)

An auto-regressive (1) model, or AR(1) model is generated by

Yo = O1yr—1 + e

and is sometimes called a Markov process. Given knowledge of
141, observations further back carry no information.

An auto-regressive model of order p, or AR(p) model is generated
by

p
Yt = Z Pjyt—p + €t
1

j=
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relation between AR and MA processes

substitute the AR(1) as follows
Yo = d1ye-1 + e

Y = 01(P1yi—2 + er—1) + €
Ye = 2 (d1ye—3 + er_2) + dres1 + e

etc. In the limit, we may write an AR process as an (infinite) MA
process.
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Removing the diurnal periodicity

Assuming this is a sinus function, a1 + ag sin(t 4+ «3), we need
non-linear regression (as)

> f = function(x) sum((T.outside -
(x[1]1+x[2]*sin(pi* (hours+x[3])/12)))"2)

> nlm(£f,c(0,0,0))

$minimum

[1] 108956.1

$estimate
[1] 18.189544 -4.904740 1.604442

> T.per = 18.2-4.9*sin(pi*(hours+1.6)/12)
> plot(T.outside,type=’1")
> plot(T.per, type=’1l’, col = ’red’, add=TRUE)
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Back to the temperature series

T.outside
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Temperature anomaly
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What can we do with such models?

» learn how they could have been generated
» predict future observations (estimation/prediction)

> generate similar data ourselves (simulation)
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Prediction AR(6): 10 minutes

predicting 10 mins

meteo$T.outside
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Prediction AR(6): 2 hours

predicting 110 mins

meteo$T.outside
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Prediction AR(6): 1 day

predicting 1 day

meteo$T.outside
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Prediction AR(6): 1 week

predicting 1 week

meteo$T.outside
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Prediction sinus trend + AR(6): 1 week

predicting 1 week

meteo$T.outside
10 15 20 25 30
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Simulation: with and without trend

red: with trend, blue: without trend
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What can we learn from this?

Prediction /forecasting:

» AR(6) prediction is a compromise between the end of the
series and the trend

» the closer we are to observations, the more similar the
prediction is to the nearest (last) observation

» further in the future the prediction converges to the trend

» the more useful (realistic) the trend is, the more realistic the
far-into-the-future prediction becomes

» the standard error of prediction increases when predictions are
further in the future.
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How to select a “best” model?

A possible approach is to find the minimum for Akaike’s
Information Criterion (AIC) for ARMA(p, ¢) models and series of
length n:

AIC =logé* +2(p+q+1)/n

with 2 the estimated residual (noise) variance.

Instead of finding a single best model using this single criterion, it
may be better is to select a small group of “best” models, and
look at model diagnostics for each: is the residual white noise?
does it have stationary variance?

Even better may be to keep a number of “fit" models and consider
each as (equally?) suitable candidates.
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AIC for AR(p)

> arima(temp,c(1,0,0))$aic # AR(1)
[1] -23547.93

> arima(temp,c(2,0,0))$aic # AR(2)
[1] -30235.42

> arima(temp,c(3,0,0))$aic # etc.
[1] -30713.51

> arima(temp,c(4,0,0))$aic

[1] -30772.31

> arima(temp,c(5,0,0))$aic

[1] -30815.14

> arima(temp,c(6,0,0))$aic

[1] -30816.35

> arima(temp,c(7,0,0))$aic

[1] -30818.27

> arima(temp,c(8,0,0))$aic

[1] -30818.39

> arima(temp,c(9,0,0))$aic

[1] -30817.82

> arima(temp,c(10,0,0))$aic

[1] -30815.84
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AIC as a function of p, for AR(p)
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Anomaly AIC as a function of p, for AR(p)
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Optimization: 1. linear systems

Take the example
ar1 +bri2 =y
axo1 + braa = Yo

with the x and y values known, and a and b unknown. This is
similar to fitting a straight line through two points: let (x1,y1) be
the first point and (x2,y2) be the second, then

a+br; =
a+bros =19

The approach is substition: rewrite one equations such that
isolates a or b, and substitute that in the second.
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Matrix notation

We can rewrite
ari1 +briz =y

arol + bxras = yo

as the matrix product

[»’611 «T12:||:a:|:|:y1:|
To1 X22 b Y2

or
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Matrix transposition

The transpose of a matrix is the matrix formed when rows and

columns are reversed. If

b

Il
o N =

|

—

then it's transpose,

, 1 28
A_[4 -1 9]

(and may be written as A7)

Edzer J. Pebesma
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Matrix inverse and identity

The identity matrix is square (nr of rows equals nr of columns),
has ones on the diagona (for which the row number equals the
column number) and zeroes elsewhere. E.g. the 3 x 3 identity

1 00
I=]10 10
0 0 1
The inverse of a square matrix X, X !, is defined by the products

X 'X=1

and
XX t=r1
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Suppose we have n equations with p unknowns:

ai1ril + asxi2+ ... + apTip = Y1
a1T91 + agxa+ ... + apToy = Yo
A1Tp1 + a2Tn2+ ... + ApZpp = Yn

we can rewrite this in matrix notation as Xa = y, with z;;
corresponding to element (7, j) (row i, column j) in X, having n
rows and p columns; a and y column vectors having p and n
elements, respectively. Now, X and y are known, and a is
unknown. a Solutions:

» if p > n, there is no single solution
» if p=mn and X is not singular, then a = X1y

» if p < n we have an overdetermined system, and may e.g.
look for a least square (best approximating) solution.
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Linear least squares solution
If p < n, a solution usually does not exist: try fitting a straight line
through three or more arbitrary points.
Now rewrite Xa =y as y = Xb + e, with e the distance (in
y-direction) from the line. If we want to minimize the sum of
squared distances, then we need to find b for which R = Y"1 | €?
is minimum. In matrix terms, R = (y — Xb)'(y — Xb) with ’
denoting transpose (row/col swap).
OR
§b 0
o(y — Xb)'(y — Xb)
0b
0(y'y — (Xb)'y — y'(Xb) + (X)'Xb)
0b

=0

=0
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0(y'y — (Xb)'y — y'(Xb) + (Xb)'XD)
ob
now you should first note that (Xb)’ = /X', and second that
b’ X'y = y' Xb because these are scalars. Then,

—2X'y+2X'Xb=0
X'Xb=X"y
b= (X'X)"1X'y

this yields the least squares solution for b; the solution equations
are called the normal equations.
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The practice of solving systems
when we write
Ax =b
with known A and b and unknown z, the solution is
r=A"1b

In practice however, we do not need to compute A~!, but can
directly solve for x. This is much cheeper.

> m=matrix(0,3000,3000)
> diag(m)=1
> system.time(x <- solve(m))
user system elapsed
1.52 0.56 2.08
> system.time(x <- solve(m,rep(0,3000)))
user system elapsed
0.396 0.148 0.545
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> X=cbind(c(1,1,1),c(1,2,3))
> X
[,1]1 [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
>y =c¢(1,0,2)
> solve(t(X) %*% X, t(X) %*% y)

[,1]
[1,] 0.0
[2,]1 0.5

Edzer J. Pebesma
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Non-linear Optimization

» one-dimensional search on a unimodal function: golden search
» non-linear least squares: the Gauss Newton algorithm
» probabilistic methods: global search

» Metropolis-Hastings
» Simulated Annealing
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Golden search

Golden ratio:
X1 )

T2 T+ X2
Solution (check): if 21 =1, then z3 ~ 1.618 or x9 ~ 0.618

Found in: art, sculpture, geometry (pentagrams), Egyptian
pyramides, architecture, nature, A4 paper, ...
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Minimum outside current section

f(x) ©
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Minimum inside current section

f(x) ©
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Algorithm

Recursive zooming:

1.

find three GR points, a, b and ¢ such that the minimum lies
within a and b

put a point d in the largest section according to GR, with the
smallest interval closest to the smallest value

(In case of adbc) determine whether the mininum is between
aand bordandc

. continue with either adb or dbc as if it were abc, unless we're

sufficiently close*

* in terms of our goal, or of numerical resolution
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Combined linear and golden search

Spherical variogram with nugget has three parameters: nugget co,
(partial) sill ¢; and range a:

L if h=0
W=\ o+ eif(ah) if h>0

with
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Approach:

Provide an initial estimate ag; then iterate:
1. given current fit for a, fit the linear coefficients ¢y and ¢;
2. given this fit, do golden search for a

until convergence (vector (a, ¢, c1) does not move).
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Gauss-Newton

Golden search may be used for any criterion, e.g.

f(x) =>"" 1 gi(x)P for any chosen p. If we limit ourselves to least
squares (i.e., p = 2) and want to generalize this for higher
dimensional (i.e., multiple parameter) z (e.g. « = [z1,...,24]") we
may use the Gauss-Newton algorithm (non-linear least squares).
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Gauss-Newton: the algorithm (1/2)

Problem: given a model y = g(X,0) + e find

ming >y — 9(X, 0))

Let fi(0) = vi — 9(X;,0), so we minimize R = Y"1, fi(0)

This is a problem from space (1 x n) to (1 x m)

Given a starting value 6° we search the direction of steepest
descent in terms of R, using first order derivatives of R towards 6.
By iteration, from 6% we find 6%+1 by

gk-l—l — ek + 6k

until we have convergence.
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Gauss-Newton algorithm (2/2)

Let the Jakobian be

5f1(6%) 5f1(6%)
004 00,
Jp(0F) = : . :
5 fn(6%) 5fn(6%)
0601 00,
In
ot =P + §*

we find 8 by solving
Tr(0k) T (00)0" = —Tp(0) F(0")

What if 6 f,,(6%) /50 is unknown?
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Gauss-Newton and the Normal euqations

Recall that in multiple linear regression, with y = X0 + e the
solution is given by the normal equations
X'X0 =Xy
Note that here, the Jacobian of y — X0 is — X, so if we take
(arbitrarily) 6y = (0,0, ...,0)’, then
Tr(Ok) 7 (04)0" = =T (k) F(0")

yields after one step the final solution §' = 6, as
(- X)'(-=X)d = X'y.

Other starting points yield the same solution for 6.
Further steps will not improve it (i.e., yield 6* = 0).
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Problems with steepest descent

> (see previous slide:) steepest descent may be very slow

» Main problem: a minimum may be local, other initial values
may result in other minima

» Cure: applay Gauss-Newton from many different starting
points (cumbersome, costly, cpu intensive)

» Global search:

> apply a grid search — curse of dimensionality. E.g. for three
parameters, 50 grid nodes along each direction: 50% = 125000
» apply random sampling (same problem)
> use search methods that not only go downbhill:
> Metropolis-Hastings
> Simulated Annealing
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Metropolis-Hastings

Why would one want probabalistic search?
> global-unlikely areas are searched too (with small probability)

» a probability distribution is richer than a point estimate:
Gauss-Newton provides an estimate of 0 of 6, given data y.
What about the estimation error § — 6?7 Second-order
derivatives give approximations to standard errors, but not the
full distribution.

We explain the simplified version, the Metropolis algorithm
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Metropolis algorithm

Given a point in parameter space 0, say x; = (014, ...,0,+) we
evaluate whether another point, 2’ is a reasonable alternative. If
accepted, we set x411 < 2’; if not we keep z; and set w411 «— z4.
» if P(2') > P(x;), we accept 2’ and set x4 = 2/
» if P(2') < P(x), then
» we draw U, a random uniform value from [0, 1], and

» accept 2’ if U < gg;:g

Often, 2’ is drawn from some normal distribution centered around
x4 N(xy,0%I). Suppose we accept it always, then

Tl = T+ €

with e; ~ N(0,02%I). Looks familiar?
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Burn-in, tuning o2

>

When run for a long time, the Metropolis (and its
generalization Metropolis-Hastings) algorithm provide a
correlated sample of the parameter distribution

M and MH algorithms provide Markov Chain Monte Carlo
samples; another even more popular algorithm is the Gibb's
sampler (WinBUGS).

As the starting value may be quite unlikely, the first part of
the chain (burn-in) is usually discarded.

if 02 is too small, the chain mixes too slowly (consecutive
samples are too similar, and do not describe the full PDF)
if o2 is too large, most proposal values are not accepted
often, during burn-in, o2 is tuned such that acceptance rate is
close to 60%.

many chains can be run, using different starting values, in
parallel
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Likelihood ratio — side track

!
For evaluating acceptance, the ratio ]}zgt% is needed, not the

individual values.

This means that P(z’) and P(x;) are only needed up to a
normalizing constant: if we have values aP(z’) and aP(z;), than
that is sufficient as a cancels out.

This result is key to the reason that MCMC and M-H are the work
horse in Bayesian statistics, where P(x’) is extremely hard to find
because it calls for the evaluation of a very high-dimensional
integral (the normalizing constant that makes sure that P(-) is a
probability) but aP(z'), the likelihood of x given data, is much
easier to find!
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Simulated annealing

Simulated Annealing is a related global search algorithm, does not
sample the full parameter distribution but searches for the (global)
optimimum.

The analogy with annealing, the forming of crystals in a slowly
cooling substance, is the following:

The current solution is replaced by a worse "nearby” solution with
a certain probability that depends on the the degree to which the
"nearby” solution is worse, and on the temperature of the cooling
process; this temperature slowly decreases, allowing less and
smaller changes.

At the start, temperature is large and search is close to random;
when temperature decreases search is more and more local and
downhill. Random, uphill jumps prevent SA to fall into a local
minimum.
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Spatial modelling and spatial interpolation

Simple ways of interpolation
Simple statistical models for interpolation
Geostatistical interpolation

Deterministic models

vV v. v v .Y

Combined approaches
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Taking a step back

Why do we need models?
» to understand relations or processes

> to assess (predict, forcast, map) something we do or did not
measure and cannot see

> to assess the consequence of decisions (scenarios) where we
cannot measure
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A sample data set

zinc, ppm

«  [100,200]

«  (200.400]

«  (400.700]
(700,1200]
(1200,2000]
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Thiessen " polygons”, 1-NN

Zinc, 1-nearest neighbour
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Zinc concentration vs. distance to river

7.5

log(zinc)

sqrt(dist)
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Simple ways of interpolation

Inverse distance weighted; idp = 2

12000
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Inverse distance weighted interpolation
Uses a weighted average:

n

Z(s0) =Y _ NiZ(si)

=1

with so = {xo, 0}, or so = {xo, yo,depthy} weights inverse
proportional to power p of distance:

|si — 0| 7"

Diq |8i— so| 7P

i =

> power p: tuning parameter

» if for some i, |s; — so| = 0, then A\; = 1 and other weights
become zero

» = exact interpolator
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Effect of power p
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Simple statistical models for interpolation

log(zinc)

sqrt(dist)
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Time series versus spatial data

Differences:

> spatial data live in 2 (or 3) dimensions

» there's no past and future

> there's no simple conditional independence (AR)
Correspondences

> nearby observations are more alike (auto-correlation)

» we can form moving averages
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What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

» we have z and y

Edzer J. Pebesma ifgi, Universitat Miinster, 83




What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

» we have z and y

» we may have land use data
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What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

» we have z and y
» we may have land use data

» we may have soil type or geological data
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What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

we have x and y
we may have land use data

we may have soil type or geological data

vV v v VY

we may have remote sensing imagery

Edzer J. Pebesma ifgi, Universitat Miinster, 86




What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

we have x and y
we may have land use data
we may have soil type or geological data

we may have remote sensing imagery

vV v.v v VY

we may have all kinds of relevant information, related to
processes that cause (or result from) Z(x)
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What information do we have?

» We have measurements Z(z), with = two-dimensional
(location on the map)

we have x and y
we may have land use data
we may have soil type or geological data

we may have remote sensing imagery

vV v.v v VY

we may have all kinds of relevant information, related to
processes that cause (or result from) Z(x)

» we have google maps
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What information do we have?

vV v.v v VY

>

We have measurements Z(x), with = two-dimensional
(location on the map)

we have x and y

we may have land use data

we may have soil type or geological data
we may have remote sensing imagery

we may have all kinds of relevant information, related to
processes that cause (or result from) Z(x)

we have google maps

We don’t want to ignore anything important
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Regression or correlation?
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The power of regression models for spatial prediction

. is hard to overestimate. Regression and correlation are the fork

and knife of statistics.

» linear models have endless application: polynomials,
interactions, nested effects, ANOVA/ANCOVA models,
hypothesis testing, lack of fit testing, ...

» predictors can be transformed non-linearly

» linear models can be generalized: logistic regression, Poisson
regression, ..., to cope with discrete data (0/1 data, counts,
log-normal)

» many derived techniques solve one particular issue in
regression, e.g.:

> ridge regression solves collinearity (extreme correlation among
predictors)

> stepwise regression automatically selects " best” models among
many candidates

» classification and regression trees
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Why is regression difficult in spatial problems?

Regression models assume independent observations. Spatial data
are always to some degree spatially correlated.
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Why is regression difficult in spatial problems?

Regression models assume independent observations. Spatial data
are always to some degree spatially correlated. This does not mean
we should discard regression, but rather think about

» to which extent is an outcome dependent on independence?

» to which extent is regression robust agains a violated
assumption of independent observations?

> to which extent is the assumption violated? (how strong is
the correlation)
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What is spatial correlation?

Waldo Tobler's first law in geography:

Everything is related to everything else, but near things are more
related than distant things.” [Tobler, 1970, p.236]

TOBLER, W. R. (1970). "A computer model simulation of urban
growth in the Detroit region”. Economic Geography, 46(2):
234-240.

Edzer J. Pebesma ifgi, Universitat Miinster, 94




What is spatial correlation?

Waldo Tobler's first law in geography:

Everything is related to everything else, but near things are more
related than distant things.” [Tobler, 1970, p.236]

TOBLER, W. R. (1970). "A computer model simulation of urban

growth in the Detroit region”. Economic Geography, 46(2):
234-240.

But how then is "being related” expressed?

Edzer J. Pebesma
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What is spatial correlation?

Idea from time series: look at lagged correlations, and the
h-scatterplot.
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How can correlation help prediction?

Problem:

Domain of
/

interest

Observation
m— . @ Prediction
location
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Questions

Given observation z(s1), how to predict z(sg)?
» What is the best predicted value at sg, 2(sg)?
» How can we compute a measure of error for Z(sg) — z(sg)?

» Can we compute e.g. 95% prediction intervals for the
unknown z(sg)?

Edzer J. Pebesma
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Questions

Given observation z(s1), how to predict z(sg)?
» What is the best predicted value at sg, 2(sg)?
» How can we compute a measure of error for Z(sg) — z(sg)?
» Can we compute e.g. 95% prediction intervals for the
unknown z(sg)?
Obviously, given only z(s1), the best predictor for z(sg) is
Z(s0) = z(s1).
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Questions

Given observation z(s1), how to predict z(sg)?
» What is the best predicted value at sg, 2(sg)?
» How can we compute a measure of error for Z(sg) — z(sg)?
» Can we compute e.g. 95% prediction intervals for the
unknown z(sg)?

Obviously, given only z(s1), the best predictor for z(sg) is
Z(sg) = z(s1). But what is the error variance, i.e.

Var(2(so) — 2(s0))
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Estimation error

Let both z(s1) and z(sg) come from a field that has variance 1,
i.e. Var(z(sg)) = Var(z (s )) =1, and that has a constant mean:
E(z(s0)) = E(2(s1)) =

Then,

Var(z(so) — z(s0)) = Var(z(s1) — z(so))
As both have the same mean, this can be written as
E(2(s0) — 2(s0))? = Var(z(s1)) + Var(z(s0)) — 2Cov(2(s1), z(s0))

As both have variance 1, this equals 2(1 — r) with r the correlation
between z(sp) and z(s1). Examples follow.
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correlation: 0.033 MSE 1.793
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correlation: 0.463 MSE 1.105

2 3456 78
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correlation: 0.899 MSE 0.203

y
3 45 6 7
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correlation: 0.995 MSE 0.01

y
2 34561738
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Suppose we know the mean

If we know the mean p, it may be a good idea to use a
compromise between the observation and the mean, e.g.

2(s0) = (1 — 7))+ rz(s1)
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Next problems...

Domain of
/

interest

Observation
B— . @ Prediction
location

Observation
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Observation

Domain of
/

Observation interest

Observation
B—w@ Prediction
location

Observation

[
Observation
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What is Geostatistical Interpolation?

Geostatistical interpolation (kriging) uses linear predictors
n
2(80) = Z /\Zz(s,,)
i=1

with weights chosen such that
> the interpolated values is unbiased: E(Z(sp) — 2(s0)) = 0 and
» has mininum variance: Var(Z(sg) — z(sp)) is at minimum.

All that is needed is variances and correlations.
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Random variables
Random variables (RVs) are numeric variables whose outcomes are
subject to chance.
The cumulative distribution of probability F,(-) over outcomes z
over all possible values of the RV Z is the probability distribution
function:

P(Z <z) / fz(u

where f7(-) is the probability density function of Z. The sum of all
probability is 1.

Random variables have an expectation (mean):

E(Z)= [ ufz(u)du and a variance:

Var(Z) = E[(Z — E(Z))?].

Try to think of E(Z) as >, nz;, with i — cc.

Two random variables X and Y have covariance defined as
Cov(X,Y) = E[(X — BCX)(Y — E(Y))]
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Correlation and covariance

Correlation is scaled covariance, scaled by the variances. For two
variables X and Y, it is

Cov(X,Y)
Var(X)Var(Y)

It is quite easy to show that |Cov(X,Y)| < y/Var(X)Var(Y), so

correlation ranges from -1 to 1. For this, note that
Cov(X, X) = Var(X). and Cov(X, —X) = —Var(X).

Corr(X,Y) =
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Correlation and covariance

Correlation is scaled covariance, scaled by the variances. For two
variables X and Y, it is

Cov(X,Y)
Var(X)Var(Y)

It is quite easy to show that |Cov(X,Y)| < y/Var(X)Var(Y), so
correlation ranges from -1 to 1. For this, note that

Cov(X, X) = Var(X). and Cov(X, —X) = —Var(X).

It is perhaps easier to think of covariance as unscaled correlation.

Corr(X,Y) =

Edzer J. Pebesma ifgi, Universitat Miinster, 112




Correlation and covariance

Correlation is scaled covariance, scaled by the variances. For two
variables X and Y, it is

Cov(X,Y)
Var(X)Var(Y)

It is quite easy to show that |Cov(X,Y)| < y/Var(X)Var(Y), so
correlation ranges from -1 to 1. For this, note that

Cov(X, X) = Var(X). and Cov(X, —X) = —Var(X).

It is perhaps easier to think of covariance as unscaled correlation.
A large covariance does not imply a strong correlation

Corr(X,Y) =
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The quadratic form

We will not consider single random variables (how boring), but
rather large collections of them. In fact, we will consider each
observation z(s;) as a realisation (outcome) of a random variable
Z(s;), and consider the Z variable at all other locations also as
separate random variables, say Z(sg) for any sg in the domain of
interest.

Let Z = [Z(s1)Z(s2)...Z(sn)] then Var(Z) is the covariance
matrix of vector Z, with 4, j-th element Cov(Z(s;), Z(s;)),
implying it has variances on the diagonal.

Then, it is easy to show that for non-random weights A = [A1...\,]
the quadratic form N'Z = >""" | \;Z(s;) has variance

Var(X Z) = X'Var(Z)A =Y Y " XiX;Cov(Z(si), Z(s;)) = NVA
i=1 j=1
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Why do we need this?

When we predict (interpolate), we're forming linear combinations,
Y1 AiZ(si), and want to know the variance of

o1 NiZ(si) — Z(s0), the interpolation error variance. Only then
can we find weights such that it is minimum.

What is the scalar Var(}!" | A\;Z(s;) — Z(s0))? Write as

Var(N'Z — Z(so)) = Var(\N'Z) + Var(Z(so)) — 2Cov(N'Z, Z(s))

= XVA+0ad+ > \Cov(Z(s:), Z(s0))
i=1
with 03 = Var(Z(s¢))
SO,we need variances of all Z(s;), including for all sg, and all
covariances between pairs Z(s;) and Z(s;), including all sg).
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Suppose we know all that

Kriging: find weights A such that

Var(Z(s0) — Z(s0)) = Var(Z(so) — 3.1~ \iZ(s;)) is minimized,
and we have the best (minimum variance) linear predictor.

Best linear prediction weights: Let V' = Var(Z) (n x n) and

v = Cov(Z(s0),Z) (nx 1), and scalar Var(Z(sg)) = o3.
Expected squared prediction error E(Z(so) — Z(s0))% = 02(s0)
Replace Z with Z — p (or assume p = 0)

02(s0) = E(Z(sg) — N Z)? =

E(Z(s0))2 — 2XN'E(Z(s0)Z) + NE(ZZ')A

= Var(Z(sg)) — 2N Cov(Z(s0), Z)+NVar(Z)\ = 02 —2Nv+ NV A
Choose A such that % =—20+2\V =0

N =V 1

BLP/Simple kriging:

Z(so) = p+ 0V HZ —p) o%(so) =0 'V
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Unknown, constant mean

Suppose the mean is constant, but not known. This is the most
simple realistic scenario. We can estimate it from the data, taking
into account their covariance (i.e., using weighted averaging):

m= 1V 1) "1'v-lz

with 1 a conforming vector with ones, and substitute this mean in
the SK prediction equations: BLUP /Ordinary kriging:

Z(s0) = m+ 'V HZ —m)
o?(s0) =08 — 'V +Q
with Q = (1 - 1'V-1)(1'V-i1) 11 - 1'V—1v)
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Known, varying mean

This is nothing else then simple kriging, except that the mean is no
longer constant; BLP/Simple kriging:

Z(s0) = u(so) +v'VHZ = uls))
0%(s0) = o2 — 'Vl

with p(s) = (u(s1), p(s2), .., p(sn))".
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Unknown, varying mean

For this, we need to know how the mean varies. Suppose we model
this as a linear regression model in p known predictors:

Z(si) =Y BiXj(s:) + e(si)
=0

Z(s) =Y BiX;(s) +e(s) = XB + e(s)
§=0

with X the matrix with predictors, and row ¢ and column j
containing X(s;), and with 8 = (8o, ...0p). Usually, the first
column of X contains zeroes in which case (y is an intercept.
Predictor:

Z(s0) = z(s0)B+ 'V HZ — X3)

with 2(s0) = (Xo(s0), ..., Xp(s0)) and § = (X'V-IX)"1X'V~-1Z

it has prediction error variance
Edzer J. Pebesma
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Spatial Prediction

2(s1)5 Z7(s2)=3.6
+\ //+
) \ao/
Z(s0)=? "\
7(s3)=2.8 '+
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Stationarity 1

Given prediction location sg, and data locations s and ss, we
need: Var(Z(so)), Var(Z(s1)), Var(Z(sz2)), Cov(Z(so0), Z(s1)),
Cov(Z(so), Z(s2)), Cov(Z(s1), Z(s2)).

How to get these covariances?

> given a single measurement z(s1), we can not infer
Var(Z(s1))

> given two measurements z(s1) and z(s2), we can never infer
Cov(Z(s1), Z(s2))

> geven a time series at s; and so, we can infer
Cov(Z(s1), Z(s2)), but how to infer Cov(Z(sp), Z(s1)) and
Cov(Z(s0), Z(s2))?

Solution: assume stationarity.
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Stationarity 2

Stationarity of the
mean E(Z(s1)) = E(Z(Sg)) =..=m
variance Var(Z(s1)) = Var(Z(s2)) = ... = 03
covariance Cov(Z(s1),Z(s2)) = Cov(Z ( ) Z(s4)) if
S1 — s = s3 — s4: distance/direction dependence

Second order stationarity: Cov(Z(s),Z(s+ h)) = C(h)
which implies: Cov(Z(s), Z(s)) = Var(Z(s)) = C(0)
The function C(h) is the covariogram of the random function Z(s)
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From covariance to semivariance

Covariance:

Cov(Z(s), Z(s + h))

Semivariance: y(h) =

C(h) = E[(Z(s) = m)(Z(s + h) — m)]
E[(Z(s) = Z(s + h))?]
N2+ (Z(s+h))?—2Z(s)Z(s+h)]

l\D\H ”

[EA[(Z(S) (SJ]rh)) | =E[(Z(
ssume m = 0]:

E[(Z(s) = Z(s+h))’] = E[(Z(5))*] + E[(Z(s1))?] — 2E[Z(s) Z (s +
h)] = 2Var(Z(s)) — 2Cov(Z(s), Z(s + h)) = 2C(0) — 2C(h)

E ) =C(0) - C(h)

h) is the semivariogram of Z(s).

»




The Variogram
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The Variogram

» the central tool to geostatistics

> like a mean squares (variance) in analysis of variance, like a t
to a t-test

measures spatial correlation
subject to debate: it involves modelling

synonymous to semivariogram, but

vV v v Y

semivariance is not synonymous to variance
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Variogram: how to compute

average squared differences:

1

Y(h) = 57 D (Z(si) = Z(si+h))* heh
2Nn i

» divide by 2/Vy:

» if finite, y(c0) =0
> semivariance

2

> if data are not gridded, group Ny, pairs s;, s; + h for which
heh, h= [hl,hQ]

» choose about 10-25 distance intervals &, from length 0 to
about on third of the area size

» “plot” h at the average value of all h € h
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Variogram: terminology

0.6 o L
s ©
Q
04 r
g
£
[9)
n
0.2 - L
Partial
sill
0.0 T T T
0 500 1000 1500

distance
Edzer J. Pebesma




Why prefer the variogram over the covariogram

Covariance:
Cov(Z(s), Z(s + h))
Semivariance: «y(h) =
7(h) = C(0) = C(h)

> tradition

» C(h) needs (an estimate of) m, y(h) does not

» C(0) may not exist (co!), when y(h) does (e.g., Brownian

motion)

C(h) = E[(Z(s) = m)(Z(s + h) = m)]
E[(Z(s) — Z(s + h))?]

D= H

> software wants 7(h).
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Kriging varieties

Simple kriging: Z(s) = pu+ e(s), p known
Ordinary kriging: Z(s) = m + e(s), m unknown
Universal kriging: Z(s) = X3+ e(s), B unknown
SK: linear predictor X' Z with X such that

02(s0) = E(Z(s0) — N'Z)? is minimized

» OK: linear predictor \'Z with X such that it

1. has minimum variance 02(sg) = E(Z(s9) — \'Z)?, and
2. is unbiased E(NZ) =m

» second constraint: . ; \; = 1, weights sum to one.

vV v v VY
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» UK: R X R
Z(s0) = z(s0)B + 'V HZ — XP3)

with z(s9) = (Xo(s0), ..., Xp(s0)) and
f=(X'VX)lx'v-lz

o(s0) =08 ="'V +Q
with Q = (z(s0) — X'V 1) (X'V1X) L (x(s0) — X'V~ 1)

» OK: fill in a column vector with ones for X: X = (1,1,...,1)
and Xp =1
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Deterministic spatial dynamic models

Deterministic models are based on the assumption that the
processes governing change are known. Given that knowledge, we
need

» the state of a system (initial conditions), and

» the characteristics at boundaries of the system (boundary
conditions): what are the sources and sinks, when does what
escape or enter the modelled area.

for a (perfect) prediction of the changes over time, and in space.
Let us look at an example: air quality (fine particles, PM10).
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Model domain

For a model, we need a model domain, which is the spatial area
and temporal period over which we will define processes and
conditions. This could be e.g. Western Europe, 1980-2010, or
NRW, 2000-2005, or the area not further than 100 m away from
the crossing Weseler Strasse-Bonhoeffer Strasse, Jan 8, 2008,
0:00-24:00. It should be exactly quantifiable/traceable.
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Initial conditions

The initial conditions usually describe the variable of interest (the
concentration field) at the highest possible level of detail. In our
case this is the PM10 concentration field at the start of the
modelling period.
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Initial conditions

The initial conditions usually describe the variable of interest (the
concentration field) at the highest possible level of detail. In our
case this is the PM10 concentration field at the start of the
modelling period.

As this is a continuous field, we need some way to describe this
and usually the spatial domain is discretized into model usually
square, rectuangular or triangular model elements.
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Initial conditions

The initial conditions usually describe the variable of interest (the
concentration field) at the highest possible level of detail. In our
case this is the PM10 concentration field at the start of the
modelling period.

As this is a continuous field, we need some way to describe this
and usually the spatial domain is discretized into model usually
square, rectuangular or triangular model elements.

This discretization should match the level of detail (i) at which we
know initial conditions and (ii) at which we want to model
features. As an example: if we want to quantify the effect of
individual car fumes, spatial elements of 10 cm—1 m may work; if
we want to describe the effect of a complete streets something of
10m—100m seems more appropriate. Smaller elements and time
steps mean more memory and CPU time requirements.
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Initial conditions-2

If we don't know initial conditions exactly, we may put the starting
point of the modelling domain further back in the past, and hope
that the effect of approximation will damp out as we model. (This
assumes we get the boundary conditions and processes right.)
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Boundary conditions

PM10 comes and goes. Sources are (i) emissions inside the model
domain (cars, households, industry), and (ii) material that enters
the model domain by movement of air bodies, but emitted
elsewhere. We need these source terms (points, lines or fields) in
space, and over time.

Sinks are mostly air that moves out of the model domain, and
wash out (rain), dry deposition (your grandmother’s white sheets
turning black), and ... inhalation. These terms are also needed,
quantitatively.
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Processes

Particles move mostly for two or three reasons: by large-scale
movement of air (wind), by medium/small-scale movement of air
(turbulence, dispersion) and by themselves (diffusion; think
Brownian motian of a single particle in a gas).

As an example, take a look at the LOTOS-EUROS model
(http://www.lotos-euros.nl/) model documentation.

As you can read in the model formulation and domain, the model
uses external modelling results (interpolation or mechanistic
modelling) to get the atmospheric driving forces (height mixing
layer, wind fields), e.g. from FUB and ECMWF
(http://www.ecmwf.int/).

Basically, the model code (i) reads a lot of initial and boundary
data, (ii) solves the differential equations and (iii) writes out
everything that is of interest, such as the space-time concentration
fields.
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Solving differential equations

The partial differential equation solved,

5CsC_sC . 5C
a U TV

0 oC 1) oC 0 oC
= — — )+ — —)+ —(K,—)+FE+R -D-W
5x( h5x)+5y( héy)+6z( 5z)+ HRTQ
needs to be discretized in space and time. Spatial grid size is
0.5°long x 0.25°lat (meaning that grid cells do not have constant

area), and time step is 1h.
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Solving PDE's
The simples method, finite difference, uses a regular mesh size, Ax.
In one dimension the first derivative uses one of the three
approximations (backward, forward, centered):

2 (jAg) ~ M
2 (jag) m
and for the second order derivative
g:;(ij) ~ it _(ZQ;J);_ Uj—1
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Diffusion equations, 1-D

Diffusion happens in space-time. Using a mesh in space-time, we
can write u(jAz,nAt) ~ u? with n a superscript, not power.
We can approximate

S ul -
“Z(iA At L7
50 (jAz,nAt) Az

du L Y T

(JAz,nAt) s

ox
PDE: )
0 1) .
54: = ﬁ with u(z,0) = ¢(z)
Using forward difference for ¢t and centered for x, the
corresponding finite difference equation that approximates it is:
+1
witt — ol = 2ul gy

At (Ax)?

Edzer J. Pebesma
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Forward /backward, explicit/implicit

Solving
W g a2,
At (Az)?
is trivial, as n+1 is only in the LHS. This means that for each x we
can solve the equation explicitly, where we start is not important.
They require, for stable solutions, that (AA;)Q < % See examples.
If the equation were instead

u v — 2u”+1 + u”+1

e Rk

At (A:n)

then we have the unknown u"*! both left and right of the equal
sign. This requires the solution of a (sparse) set of coupled linear
equations, and this solution is called implicit. It pays off: the
solutions are stable, and larger time steps can be chosen (provided
of course, that change is close to linear over the time step).
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Calibrating deterministic models

Models based on partial differential equations have parameters;
think of diffusion parameters, source and sink terms (boundary
conditions), and initial conditions. These need to be “filled in",
somehow.

Given that observation data on the model outcome are available,
one way to fill these in is to search for values such that the model
predictions best fit the data. We have seen methods for this; there
is a long list of further, possibly more advanced or efficient methods
for finding optimal parameter values, both in a deterministic
(“optimum™) sense, and in a stochastic ( “distribution”) sense.
Also, choosing optimality criterium (least squares? least absolute
differences? combined criteria over multiple variables?)
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Difficulties in calibration

Problems that may occur with calibrating models are numerous.
One problem may be that the parameter we tune (optimize) is not
constant over space or time, but varies. This means that there
instead of one single value, there may be numerous. Their number
may outnumber the observations, and in that case there is little
hope in finding realistic values.

Another problem is that we may tune a parameter and get a better
fit, but that in reality we turned the wrong “button”, meaning we
get a better fit for the wrong reason. This may have disasterous
effects when using this “optimized” model in a prediction setting
(such as future forecasting, or scenario evaluation).

Automatic codes exist (e.g. "PEST", or R's optim) that optimize
models, irrespective what the model is or does.
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More difficulties

Deterministic models use a temporal and spatial discretization.
This is a balance between CPU and memory costs, and the ability
to fill the discrete elements sensibly. Processes need to be
“lumped”, meaning that they cannot be taken into account
because of the grid cell size (think of convection above a forest, or
a thunder storm, when grid cell size is 50 km, and/or time step a
day). Choosing a finer resolution, the parameters, processes,
boundary and initial values need to be filled in with much more
resolution (precision), and need disaggregation — e.g. a country
total emission may need to be assigned to 1 km x 1 km grid cells.
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Dynamic parameter updating schemes

A probabilistic setting of a deterministic model is that of the
Kalman filter. This algorithm assumes measurements are a
combination of a true state and a measurement noise. Each
componentn has its particular error structure, expressed by a mean
and covariance matrix.

For each new time step, the model predicts a new state, the
observations are compared to that new state, and the model errors
are used to adjust (improve) the model before predicting the next
step.

Kalman filters are used a lot to optimize deterministic models, and
come nowadays in many flavours, e.g. depending on whether the
model is linear or not, and whether it is used forward in time, or in
real-time.
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Simplified difference equation-type models

Often, the differential equations are simplified very crudely to the
state where only mass is preserved, but the solution no longer
approximates the true differential equation. Think of simple
bucket-type models in hydrology, where water bodies are buckets
and soils are like sponges: a soil grid cell drains always with an
exponential decrease; a soil and water body grid cells drain
“instantly” when their maximum capacity is exceeded, with the
amount it is exceeded.

Despite the simplifications, these models can be more useful than
attempts to solve the full differential equation, because their data
demand can be more realistically met.
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This is not a plea against the use of any model

On the contrary, elemenents from physics (such as preservation of
energy and mass) are better than anything else. It is rather a
warning, that putting them blindly before anything else is
dangerous.

In any case one should acknowledge the limited availability of data
available for calibration, and the limitations of our ability to
truthfully represent real-world systems for the world around us.
The risk of inapt use (“misuse”) is not larger for deterministic
models than for stochastic models. But we do tend to rely on
them in more risky situations (scenario's, future).
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Which approach to choose?

When we have the information (process knowledge and necessary
inputs and boundaries) available, and where the data of the
variable of interest are sparse or missing (scenario's, future), a
deterministic modelling always needs to be the core of sound
scientific practice.

In the luxuous position where both information for the process is
available and measurements are abundant, stochastic modelling of
the observations (think ordinary kriging) may be sufficient as well.
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Stationary and non-stationary spatio-temporal models

In the context of differential equation type models, the word
stationarity usually refers to the temporal behaviour: a stationary
model solves the equation for a situation where there is no change
over time. This means there is balance between inputs and
outputs. This solution is valid for as long as boundary conditions
do not change. This is especially useful for stable systems without
large short-term fluctuations, where we are interested in some
system change (scenario), e.g. groundwater hydrology.

The non-stationary case generalizes this to the cases where there is
temporal change. The equation itself (convection-dispsersion)
models a non-stationary situation, and represents a dynamic spatial
system by its nature.
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Dynamic stochastic models

In the kriging model, y(s) = m + e(s), there is no reason to limit
the spatial index s to two-dimensional space; it can be
one-dimensional (in which case we would apply geostatitics to time
series data, and would ignore the possibility of markov-type
assumptions), two-dimensional (think of the exercises),
three-dimensional (think mining applications, or water bodies), or
space-time (s = (z,y,t), or even s = (x,y, z,t)).
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Dynamic stochastic models

In the kriging model, y(s) = m + e(s), there is no reason to limit
the spatial index s to two-dimensional space; it can be
one-dimensional (in which case we would apply geostatitics to time
series data, and would ignore the possibility of markov-type
assumptions), two-dimensional (think of the exercises),
three-dimensional (think mining applications, or water bodies), or
space-time (s = (z,y,t), or even s = (x,y, z,t)). In space-time
indexes, one should always address the issue that time units
principally differ from space units, and quantify how fast
autocorrelation decreases in time, and in space. The case where
autocorrelation decreases faster in some directions than in others is
called anisotropy, when it decreases equally fast,
direction-independent, it is called isotropy.
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Dynamic stochastic models: prediction

Space-time autocorrelations need be anisotropic by the nature of
space and time (as long as A. Walkowski has not proved
differently).

Given variance(s) and space-time autocorrelation structure, the
kriging equations do not change from those given above.
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Detecting and modelling anisotropies
In space: instead of computing semivariances over all directions,
we can limit the inclusion of point pairs for the sample
semivariogram to those that are aligned North-South, or e.g. those
that are within a direction tolerance of +22° from North-South.
Next, we do the same for E-W, and for NE-SW and NW-SE.
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Detecting and modelling anisotropies
In space: instead of computing semivariances over all directions,
we can limit the inclusion of point pairs for the sample
semivariogram to those that are aligned North-South, or e.g. those
that are within a direction tolerance of £22° from North-South.
Next, we do the same for E-W, and for NE-SW and NW-SE.
In space-time: often, sensor locations do not change over time so
it is easy to construct autocorrelograms (or semivariograms) over
time only from a single sensor. Next, we could average these over
space to get the autocorrelation in time only. For time slices, we
can estimate autocorrelation in space only.
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Detecting and modelling anisotropies

In space: instead of computing semivariances over all directions,
we can limit the inclusion of point pairs for the sample
semivariogram to those that are aligned North-South, or e.g. those
that are within a direction tolerance of £22° from North-South.
Next, we do the same for E-W, and for NE-SW and NW-SE.

In space-time: often, sensor locations do not change over time so
it is easy to construct autocorrelograms (or semivariograms) over
time only from a single sensor. Next, we could average these over
space to get the autocorrelation in time only. For time slices, we
can estimate autocorrelation in space only.

Through all the directional semivariograms a single (possibly
anisotropic) model needs to be fitted. The simples is a single model
for which the range parameter changes with direction, e.g. using
an ellipse (geometric anisotropy). More complex is a model where
(also) the variance (sill) depends on direction (zonal anisotropy).
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Differential models with stochastic paramaters or
mechanisms

The story (complexity) does not end here. An example of
combined stochastic and deterministic modelling is a stochastic
differential equation. It is a differential equation that contains one
or more random variables rather than fixed.

An example is a diffusion equation that contains random walk as
its elementary mechanism. A solution can only be described in
terms of a probability density function, as the “true” outcome will
always be unpredictable (because it is subject to chance).
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Additive or multiplicative errors?

In the exercises on the meuse data set, we have worked with the

model
y=XpB+e

where y are the log-transformed data. This is equivalent to the
model where the errors are proportional, say z = X3 - € with € an
error with mean 1:

log(z) = log(X B€) = log(X B) + log(é)

This means that if € and e have constant variance, on the log-scale
the variance of z is proportional to the mean.

Deciding whether on the observation scale or on a log-transformed
scale certain properties (constant variance, stationarity) hold, is
the responsibility of the modeller (i.e., you).
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General transforms: Box-Cox

Not transforming (or any linear transform: shift and/or
multiplication) and log-transforming are only two options. The
Box-Cox family of continuous transformations generalizes these,
and includes all power transforms:

_ [ @ =1/ ifA£0,
f(y’A)—{ In(y) if A =0

Note that y needs to be positive if A = 0, or else non-negative
(except for negative odd integer values of \).
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Example Box-Cox

Which value for XA is optimal for the linear model
f(zinc,\) = Bo + B1V Dist + e,

such that e follows a distribution as close as possible to normal?
The following R code solves this:

library (MASS) # Modern Applied Statistics with S, Venable
library(sp)

data(meuse)

out = boxcox(lm(zinc“sqrt(dist), meuse))

out$x [which(out$y == max(out$y))]

[1] -0.2222222

V V V VvV V
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Example Box-Cox — plot
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More warnings

Transformation may not solve all your problems. It is for example
well-known that for count data we need to log-transform to get
normal residuals, and a square-root transform to get residuals with
a constant variance.
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Modelling: stochastic, deterministic, or combined?

This is a general research question with no single answer.
In linear regression, the data are decomposed as

y=X0G+e

with y the observations (random), e a residual (random) and X/
the trend (deterministic, fixed). It is only lack of data that cause
the need for inference (testing) on e.g. B— 8.

In essence, this means that we split variability in something that
we understand (X 3) and something we don't understand e,
because it varies at random.

One could argue that understanding is always better than
randomness; we should only use random models after we run out
of means to understand.
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Overview

We've looked in this course at
» temporal processes
> spatial processes
» spatio-temporal processes

through the perspective of (i) random processes and (ii)
deterministic processes.
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Overview 2

General questions we try to answer:
» how do we model such a process?
» how do we identify parameters?
» what to do with misfits?

» how, in addition to predictions, to get prediction intervals?
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