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1 Linear Regression

in this exercises the basics of linear regression are repeated. we use a dataset
stored in R, it needs some preparation.

data(co2)

plot(co2)

a = start(co2)[1]

b = end(co2)[1]

co2_df = data.frame(year = rep(c(a:b), each = 12), month = rep(c(1:12),
times = b - a + 1), C02 = co2[1:1ength(co2)])

co2_df$t = co2_df$year + co2_df$month/12

V + VvV VvV Vv VvyVv

Describe the data: meaning of the values, temporal resolution and

extent.



Plot the data.

Use linear regression to fit a line to the data, according to the

Model
COy(t) =Po+P1-t+e

Give the equation with the computed values inserted. Plot the regression line.

Pick a month (e.g. January 1970), what is the mean estimate of

the monthly average of CO2 value in this month?

According to the fitted model, what is the 95% confidence interval

for a single prediction of the monthly average of CO2 in this month? Is the
measured value within this confidence interval?

[ HAND IN]Is the linear regression line a good model for the data?

How could it be improved?

2 Generating random walk data
Random walk is generated by the process
y(ti) = y(ti-1) + e(ts)

with, e.g., initial conditions y(¢9) = 0 and e(¢;) a random value from the stan-
dard normal distribution (mean 0, variance 1). Random normal deviates are
generated by the function rnorm.

> x = rnorm(10)

> X

> cumsum(x)

> plot(cumsum(rnorm(1000)), type = "1")
> plot(cumsum(rnorm(1000)), type = "1")
> plot(cumsum(rnorm(1000)), type = "1")
> plot (cumsum(rnorm(10000)), type = "1")
> plot(cumsum(rnorm(1le+05)), type = "1")

Exercise 7| Does a RW process in general increase, decrease, or does it not

have a dominant direction?



var (cumsum (rnorm(10)))
var (cumsum (rnorm(100)))
var (cumsum (rnorm(1000) ) )
var (cumsum (rnorm (10000)) )
var (cumsum (rnorm(1e+05)))
var (cumsum (rnorm (1e+06)))

vV V.V V VYV

[ HAND IN]Explain why a RW processs has a variance that in-

creases with its length

3 Time series analysis of meteo data

3.1 Exploratory data analysis

The meteo data set is a time series with 1-minute data, collected during a field
exercise in the Haute Provence (France), in a small village called Hauteville,
near Serres.

What follows is a short description of the variables.

ID ID of this data logger
year year
julian.day day number starting on Jan 1st
time time, not decimal but as hhmm
T.outside outside temperature in degrees Celcius
pressure 1000 - pressure, mbar
humidity humidity, as percentage
X unknown
windspeed wind speed
std.dev. variability of wind speed
Wind.dir wind direction, in degrees
std.dev..1 variability of wind direction (useless)
TippingBucket tipping bucket: rain fall in mm/min
date ISO time
Look at the summary of the meteo data, and plot temperature

> summary (meteo)
> plot(T.outside ~ date, meteo, type = "1")



3.2 Fitting a periodic component
We will now fit a periodic component to this data, using a non-linear fit.

> f = function(x) sum((meteo$T.outside - (x[1] + x[2] * sin(pi *
+ (meteo$hours + x[3])/12)))°2)
> nlm(f, c(0, 0, 0))

We used the function nlm that will minimize the function in its first argument
(f), using the initial guess of the parameter vector in its second argument. The
function f computes the sum of squared residuals:

n

Z (observed; — predicted,)?
i=1

How many parameters were fitted?

We will now plot observations and fitted model together:

> plot(T.outside ~ date, meteo, type = "1")
> meteo$T.per = 18.2 - 4.9 * sin(pi * (meteo$hours + 1.6)/12)
> lines(T.per ~ date, meteo, col = "red")

What is the interpretation of the fitted parameters? (if you need

to guess, modify them and replot)

We can now also plot the residual from this fitted model:
> plot(T.outside - T.per ~ date, meteo, type = "1")
> title("difference from fitted sinus")
3.3 Fitting AR model to the residuals
The AR(p) model is defined as

p
Yo = Z Djyt—j + et
j=1

with e; a white noise process. For p = 1 this simplifies to

Yt = P1Ys—1 + €.

Now try to model the residual process as an AR(5) process, and look at the
partial correlations.

an = meteo$T.outside - meteo$T.per
an.ar5 = arima(an, c(5, 0, 0))

an.arb

acf(an, type = "partial")

acf (residuals(an.ar5), type = "partial")

vV V. Vv Vv Vv



(Note that this generates 2 plots)

Does the an process exhibit temporal correlation for lags larger

than 07

Does the residuals(an.ar5) process still exhibit temporal cor-

relation for lags larger than 07

What is the class of the object returned by arima?

Let us see what we can do with such an object.

> methods(class = "Arima")
> tsdiag(an.ar5)

Try to explain what you see in the first two plots obtained

3.4 Model selection with AIC

> temp = meteo$T.outside

> arima(temp, c(1, 0, 0))$aic
> arima(temp, c(2, 0, 0))$aic
> arima(temp, c(3, 0, 0))$aic
> arima(temp, c(4, 0, 0))$aic
> arima(temp, c(5, 0, 0))$aic
> arima(temp, c(6, 0, 0))$aic
> arima(temp, c(7, 0, 0))$aic
> arima(temp, c(8, 0, 0))$aic
> arima(temp, c(9, 0, 0))$aic
> arima(temp, c(10, 0, 0))$aic

‘Which model has the smallest AIC?

HAND IN: Do a similar analysis for the humidity variable in the

meteo data set. (i) Fit a periodic trend; give the trend equation; (ii) Plot the
humidity data and the fitted model; (iii) detrend the humidity data to obtain
residuals and report for which value of n in an AR(n) model of the model
anomalies (residuals) has the lowest AIC. (iv) Up to which lag does the residual
humidity process exhibit temporal correlation?



3.5 Prediction with an AR model

Let us now work with the AR(6) model for the temperature, ignoring the pe-
riodic (diurnal) component. Make sure you have "plot recording” on (activate
the plot window to get this option).

x = arima(temp, c(6, 0, 0))

plot (meteo$T.outside, xlim = c(9860, 9900), type = "1")
x.pr = as.numeric(predict(x, 10)$pred)

x.se = as.numeric(predict(x, 10)$se)
1ines(9891:9900, x.pr, col = "red")
1ines(9891:9900, x.pr + 2 * x.se, col = "green")
1ines(9891:9900, x.pr - 2 * x.se, col "green")
title("predicting 10 mins")

plot (meteo$T.outside, xlim = c(9400, 10000), type
x.pr = as.numeric(predict(x, 110)$pred)

x.se = as.numeric(predict(x, 110)$se)
1ines(9891:10000, x.pr, col = "red")
1ines(9891:10000, x.pr + 2 * x.se, col = '"green")
1ines(9891:10000, x.pr - 2 * x.se, col "green")
title("predicting 110 mins")

plot (meteo$T.outside, xlim = c(8000, 11330), type = "1")
x.pr = as.numeric(predict(x, 1440)$pred)

x.se = as.numeric(predict(x, 1440)$se)
1lines(9891:11330, x.pr, col = "red")
1ines(9891:11330, x.pr + 2 * x.se, col
1ines(9891:11330, x.pr - 2 * x.se, col
title("predicting 1 day")

plot (meteo$T.outside, xlim = c(1, 19970), type = "1")
x.pr = as.numeric(predict(x, 10080)$pred)

x.se = as.numeric(predict(x, 10080)$se)
1ines(9891:19970, x.pr, col = "red")
1ines(9891:19970, x.pr + 2 * x.se, col = '"green")
1ines(9891:19970, x.pr - 2 * x.se, col = "green")
title("predicting 1 week")

Ill H)
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Where does, for long-term forecasts, converge the predicted value

to? Explain why?

Now compare this with prediction using an AR(6) model for the residual
with respect to the daily cycle:

plot (meteo$T.outside, xlim = c(1, 19970), type = "1")

x.an = arima(an, c(6, 0, 0))

x.pr = as.numeric(predict(x.an, 10080)$pred)

x.se = as.numeric(predict(x.an, 10080)$se)

hours.all = c(meteo$hours, max(meteo$hours) + (1:10080)/60)
T.per = 18.2 - 4.9 * sin(pi * (hours.all + 1.6)/12)
lines(T.per, col = "blue")

hours.pr = c(max(meteo$hours) + (1:10080)/60)

vV VVVVYVVYV



> T.pr = 18.2 - 4.9 * sin(pi * (hours.pr + 1.6)/12)

> 1ines(9891:19970, T.pr + x.pr, col = "red")

> 1ines(9891:19970, T.pr + x.pr + 2 * x.se, col = "green")
> 1ines(9891:19970, T.pr + x.pr - 2 * x.se, col = "green")
>

title("predicting 1 week")

[ HAND IN]Where does now, for long-term forecasts, converge

the predicted value to? Explain the difference to the upper model.

[ HAND IN]Fit a periodic trend and AR(3) model to the humid-

ity. Plot predictions for one week.

4 One-dimensional search with golden section

The function optimize (or, for that sake, optimise) optimizes a one-dimensional
function. Let us try to fit the phase of a sin function.

> phase = 1.23456789

> x = runif (10) * 2 * pi

> y = sin(x + phase)

> plot(x, y, pch = 3, xlim = ¢(0, 2 * pi), ylim = c(-1, 1))
> xx = seq(0, 2 * pi, length = 1000)

> lines(xx, sin(xx + phase), col = "red")

> f = function(x, y, phase) sum(y - sin(x + phase))"2

> optimize(f, c(0, pi), x = x, y = y)

The optimization looks quite good, but approximates.

What was the default tolerance value used here?

We can make the tolerance smaller, as in
> optimize(f, c(0, pi), x = x, y =y, tol = 1e-08)
We can check whether more significant digits were fitted correctly:

> out = optimize(f, c(0, pi), x = x, y =y, tol = 1e-08)
> print (out$minimum, digits = 10)

Is this fit better? Did optimize get the full 9 (or more) digits

right?

Function optimize uses a combination of golden section search and another
approach.



HAND IN: What is the other approach used? Search for the

explanation of this method (English wikipedia), and briefly describe in your
own words how it works. Explain why this method is used as well.

5 Linear and non-linear least squares

As a preparation, go through the course slides; if you missed the lecture you may
want to go through the Gauss-Newton algorithm, e.g. on English wikipedia.

5.1 By hand

First, we will try example by “hand”. Consider the following data set:
r1 T2 Y

0 0 5
0o 1 7
0 2 6
1 0 5

and try to find the coefficients by, b; and by of the linear regression equation
y=by+bix1 + baxs + e

(a trend surface in three dimensions), using the step-by-step example in the
course slides.

HAND IN: report the values of the coeffients found; compute the

residual sum of squares R; report the steps used to compute R and the value
found.

5.2 Linear: by 1m
Fit the same model and check your results, found above:

x1 = c(0, 0, 0, 1)

x2 = c(0, 1, 2, 0)

y =c(5, 7, 6, 5

d = data.frame(x1l = x1, x2 = x2, y = y)
summary (Im(y ~ x1 + x2, d))

vV VvV Vv VvV

5.3 Non-linear: using nls

Function nls uses a formula as its first argument, and a data frame as its second
argument. In the introduction chapter 11, http://cran.r-project.org/doc/
manuals/R-intro.html#Statistical-models-in-R, statistical models expressed
as formula are explained. The general explanation here is on linear (and gener-
alized linear) models.

Function nls uses, just like 1m, a formula to define a model. It differs from
1m formulas in that coefficients need to be named explicitly. In linear models,
the coefficients are implicit, e.g. linear regression uses the function 1m (linear
model), and for instance


http://cran.r-project.org/doc/manuals/R-intro.html#Statistical-models-in-R
http://cran.r-project.org/doc/manuals/R-intro.html#Statistical-models-in-R

> 1m(T.outside ~ hours, meteo)
> summary (1m(T.outside ~ hours, meteo))

fits and summarized the linear regression model
T.outside = By + (B1hours + e,

Here, By (intercept) and §; (slope) are implicit, and not named in the formula.

For non-linear models, we need to name coefficients explicitly, as they may in
principle appear anywhere. In the example below, the now familiar sinus model
is refitted using function nls, which uses Gauss-Newton optimization, and the
coefficients are named a, b and ¢ in the formula.

5.4 Initial conditions
Try fit the following two models:

> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b=1, ¢ =0))
> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b=1, ¢ = 2))

The two fits provide different outcomes.

What does the third argument to nls contain, and why does it

change the outcome?

Does one of the models give a better fit?

The following fit:

> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b=0, c=0))

giVGS an error message.

HAND IN: Compute the Jacobian by hand

HAND IN: Explain why the error occured.

5.5 Iteration
The consecutive steps of the optimization are shown when a trace is requested.

> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b =1, ¢ = 0), trace = TRUE)

10



What is the meaning of the four columns of additional output?

Why is more than one step needed?

In the following case

> nls(T.outside ~ a + b * sin(pi * (hours - 10.4)/12), meteo, c(a = 0,
+ b = 1), trace = TRUE)

convergence takes place after a single iteration.

Why was this predictable?

Compare the following two fits:

> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b=1, ¢ = 0), trace = TRUE)

> nls(T.outside ~ a + b * sin(pi * (hours + c)/12), meteo, c(a = 0,
+ b =1, ¢ = 0), nls.control(tol = le-12), trace = TRUE)

> nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo, c(a = 0,
+ b =1, ¢ = 0), nls.control(maxiter = 3), trace = TRUE)

5.6 Confidence intervals

Confidence intervals for the coefficients can be computed (or approximated) by
the appropriate methods available in library MASS:

> library (MASS)

> t.nls = nls(T.outside ~ a + b * sin(pi * (hours + c)/12), meteo,
+ cla=0,b=1, c=2))

> confint (t.nls)

Which coefficients are, with 95% confidence, different from zero?

5.7 Prediction
Try

> plot(T.outside ~ hours, meteo)

> t.nls = nls(T.outside ~ a + b * sin(pi * (hours + c¢)/12), meteo,
+ cla=0,b=1, c=2))

> lines(predict(t.nls) ~ hours, meteo, col = "red")

to see how predictions are generated for the data points. Interestingly, the two
commands

11



> predict(t.nls)[1:10]
> predict(t.nls, se.fit = TRUE)[1:10]
> predict(t.nls, interval = "prediction")[1:10]

all do the same. Although surprising, it is documented behaviour; see ?pre-
dict.nls. Prediction errors or intervals are much harder to obtain for non-linear
models than for linear models.

6 Metropolis and Simulated Annealing

6.1 Fun with Metropolis

The Metropolis algorithm is a simplified version of the Metropolis-Hastings al-
gorithm (search English wikipedia), and provides a search algorithm for finding
global optima, and sampling the (posterior) parameter distribution, given the
data.

Let P(0) be the probability that parameter value € has the right value, given
the data.

The metropolis algorithm considers proposal values 6’ for the parameter
vector, and accepts if, given the current value 6;, the ratio

_ P(0)
~ P(6;)

either when
. . ;. .
e « is larger than one (meaning 6’ is an improvement), or

e when a random value drawn uniformly between 0 and 1 is smaller than
«a, meaning that we accept worse parameters quite often if they’re not too
much worse.

6.2 An R function for MCMC
Consider the following function, and try to understand what is going on:

> Metropolis = function(thetal, sigma, y, fn, n = 1000, debug = FALSE) {
m = length(thetal)
out = matrix(NA, n, m)
out[1, ] = thetal
lastRSS = sum((y - fn(thetal))"2)
accept = 0
for (i in 2:n) {
proposal = rnorm(m, out[i - 1, ], sigma)
residualSumSquaresProp = sum((y - fn(proposal)) 2)
82 = lastRSS/length(y)
ratio = exp(-residualSumSquaresProp/(2 * s2) + lastRSS/(2 *
s2))
if (ratio > 1 || runif(1) < ratio) {
out[i, ] = proposal
accept = accept + 1
if (ratio > 1)

+ + + + + + +F++++F+++ o+
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+ lastRSS = residualSumSquaresProp
+ }

+ else out[i, ] = out[i - 1, ]

+ if (debug && (i%%500 == 0))

+ cat (paste("s2:", s2, "Prop:", residualSumSquaresProp/length(y)),
+ "\n")

+ }

+ cat ("acceptance rate: ", accept/(n - 1), "\n")
+ class(out) = c("Metropolis", "matrix")

+ out

+

}

Then, insert the function in your working environment by copying and pasting
the whole block.

To understand why the ratio is computed like it is here, have a look at
, the likelihood function for the normal distribution. Also recall that using
exp(a)/exp(b) = exp(a-b) is needed for numerical stability.

Let’s try and see if it works. First recollect the non-linear least squares fit
with nls and use that as a starting condition:

> t.nls = nls(T.outside ~ a + b * sin(pi * (hours + c)/12), meteo,
+ ca=0, b=1, c=2))
> f = function(x) {

+ x[1] + x[2] * sin(pi * (hours + x[3])/12)
+ }

> temp = meteo$T.outside
> hours = meteo$hours

> coef(t.nls)

> out = Metropolis(coef(t.nls), c(0.1, 0.1, 0.1), temp, £, n = 5000)
> out[1:10, ]

> out [4990:5000, ]

We can try to see what happened to the three parameters if we plot them.
For this we will make a little dedicated plot function, called plot.Metropolis.
It will be automatically called for objects of class Metropolis

> class(out)

Here’s the plot function:

> plot.Metropolis = function(x, ...) {

+ oldpar = par()

+ par (mfrow = c(ncol(x), 1), mar = rep(2, 4))

+ apply(x, 2, function(x) plot(x, type = "1", ...))
+ par (oldpar)

+ }

that you should load in the environment. Try it with:
> plot(out)
Note that now your own plot.Metropolis has been called, because Metropolis

is the class of out.

13
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HAND IN: which percentage of the proposals was rejected, and

how could you decrease this percentage?

Compare the values found with those obtained with nls e.g. by:

> confint(t.nls)
> t(apply(out, 2, quantile, probs = c(0.025, 0.975)))

6.3 The effect of sigma

Set the plot recording to “on” (activate the plot window, use the menu). Now
you can browse previous plots with PgUp and PgDown, when the plot window
is active.

Let’s first try a very small sigma.

outl = Metropolis(coef(t.nls), rep(0.3, 3), temp, f, n = 5000)
plot(out1)
out2 = Metropolis(coef(t.nls), rep(0.1, 3), temp, f, n = 5000)

plot (out2)
out3 = Metropolis(coef (t.nls), rep(0.05, 3), temp, f, n = 5000)
plot (out3)
out4 = Metropolis(coef(t.nls), rep(0.01, 3), temp, f, n = 5000)
plot (out4)

vV VVVVYVVYV

HAND IN: (i) which chain becomes stationary, meaning that
it fluctuates sufficiently for a long time over the same area? (ii) which of the
chains do not mix well?

6.4 Computing summary statistics

A useful function for doing something for each row or column is apply. Read
it’s help page, and try

> apply(out, 2, summary)

Another way of looking into the results is by plotting them; one naive plot
is
> plot(out4[, 1], out4[, 2])

It should however be reminded that a Metropolis chain contains by construction
serial correlation; a plot that reveals that is the line plot

> plot(out4[, 1], out4[, 2], type = "1")
Univarite distribution plots can be obtained by hist and gnorm, e.g..

> qqnorm(out4[, 2])

HAND IN: does parameter x[1] approximately follow a normal

distribution?

14



6.5 Initial values and Burn-in

Above, we started a Metropolis chain using fitted values from nls; now we will
use arbitrary, much worse values:

> out = Metropolis(c(0, 0, 0), rep(0.3, 3), temp, £, n = 5000)
> plot(out)
> out = Metropolis(c(0, 0, 0), rep(0.1, 3), temp, f, n = 5000)
> plot(out)
> out = Metropolis(c(0, 0, 0), rep(0.03, 3), temp, f, n = 5000)
> plot(out)

The burn-in period is the period that the chain needs to go from the initial
values to the region where it becomes stationary.

HAND IN: for the different values of sigma2, how long does it

take before the chain becomes stationary?

HAND IN: How do you compute (give the R command) the mean

and summary statistics for a chain ignoring the burn-in values?

6.6 Simulated Annealing

Not surprisingly, numeric optimization is an area with many applications in
statistics. An overview of all the optimization methods avaible in R and its
contributed packages is found by following the links: R web site = CRAN =
select a CRAN mirror = Task Views = Optimization (and while there, please
note there is also a Task View on Spatial issues).

Simulated annealing is available as a method provided by the generic opti-
mization function optim. Read the help page of this function and answer the
following question.

HAND IN: why is simulated annealing not a generic-purpose

optimization method

Suppose we want to find the mean, scale and phase of the temperature data,
and are looking for the model that best fits in terms of least absolute deviations.
Define the function

> fmin = function(x) {

+ sum(abs(temp - (x[1] + x[2] * sin(pi * (hours + x[3])/12))))
+ }

> optim(c(1, 1, 1), fmin, method = "SANN", control = list(trace =

HAND IN: What do the various output elements mean?

Do the
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> x1 = optim(c(1, 1, 1), fmin, method = "SANN")
> x2 = optim(c(1, 1, 1), fmin, method "SANN")
> x1$par - x2%par

HAND IN: explain why the parameters are equal/not equal

HAND IN: use simulated annealing to find the least squares
solution; give the function used, and compare the resulting parameter values
with the least absolute error solution.

7 Spatial modelling: introductory matter

7.1 Data sets

Besides data that are typed in, or data that are imported through import func-
tions such as read.csv, some data are already available in packages. In package
gstat for example, a data set called meuse is available. To copy this data set
to the current working data base, use, e.g. for the meuse data

> library(gstat)
> data(meuse)

> objects()

> summary (meuse)

7.1.1 meuse

The meuse data set is a data set collected from the Meuse floodplain. The heavy

metals analyzed are copper, cadmium, lead and zinc concentrations, extracted

from the topsoil of a part of the Meuse floodplain, the area around Meers and

Maasband (Limburg, The Netherlands). The data were collected during field-

work in 1990 (Rikken and Van Rijn, 1993; Burrough and McDonnell, 1998).
Load library gstat by

> library(gstat)

and read the documentation for the data set by 7meuse)

7.2 Models: the formula interface; linear regression

Most statisticians (and many earth scientists as well) like to analyse data through
models: models reflect the hypotheses we entertain, and from fitting models,
analysing model output, and analysising graphs of fitted values and residuals
we can learn from the data whether a given hypothesis was reasonable or not.
Many models are variations of regression models. Here, we will illustrate an
example of a simple linear regression model involving the heavy metal pollution
data in meuse. We will entertain the hypothesis that zinc concentration, present
in variable zinc, depends linearly on distance to the river, present in dist. We
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can express dependency of y on x by a formula, coded as y~x. Formulas can have
multiple right-hand sides for multiple linear regression, as y~x1+x2; they also
can contain expressions (transformations) of variables, as in log(y) “sqrt(x).
See ?formula for a full description of the full functionality.

To calculate a linear regression model for the meuse data:

library(gstat)

data(meuse)

zinc.1lm = Im(zinc ~ dist, meuse)
class(zinc.1m)

summary (zinc.lm)

V VvV Vv VvV

Do the following yourself:

v

plot(zinc.1m)

Besides the variety of plots you now obtain, there are many further custom
options you can set that can help analysing these data. When you ask help by
?plot, it does not provide very helpful information. To get help on the plot
method that is called when plotting an object of class 1m, remember that the
function called is plot.1lm. Read the help of plot.1lm by ?plot.1lm . You can
customize the plot call, e.g. by

> plot(zinc.1lm, add.smooth = FALSE)

In this call, the name of the second function argument is added because the
argument panel is in a very late position. Adding the FALSE as a positional
argument, as in

> plot(zinc.lm, , , , , , , FALSE)

will not work as it comes after the ... argument, which may contain an arbi-
trary number of arguments that are passed to underlying plot routines. But the
following two commands (search for the difference!) both work:

> plot(zinc.lm, caption = c("Residuen ~ Modellierte Werte", "Q@-Plot mit Normalverteilung"

+ " Standardisierte Residuen ~ Modellierte Werte", "Cook's Distanz",

+ "Residuen vs Leverage", "Cook's Distanz vs Leverage"))

> plot(zinc.1lm, , c("Residuen ~ Modellierte Werte", "QQ@-Plot mit Normalverteilung",
+ " Standardisierte Residuen ~ Modellierte Werte'", "Cook's Distanz",

+ "Residuen vs Leverage", "Cook's Distanz vs Leverage"))

HAND IN: For this regression model, which of the following
assumptions underlying linear regression are violated (if any):

® none

e residuals are heteroscedastic (i.e., their variance is not constant over the
range of fitted values)

e residuals are not normally distributed (their distribution is for example
non-symmetric)

e residuals are heteroscedastic and not normally distributed

and explain how you can tell that this is the case.
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7.3 Spatial data in R: the sp package

The R package sp provides classes and methods for spatial data; currently it
can deal with points, grids, lines and polygons. It further provides interfaces
to various GIS functions such as overlay, projection and reading and writing of
external GIS formats.

7.3.1 Points
Try:

library(sp)

data(meuse)

class (meuse)

summary (meuse)

coordinates (meuse) = c("x", "y")
class(meuse)

summary (meuse)

sp.theme (TRUE)

spplot (meuse, "zinc", key.space = "right")

VVVVVVVVYV

Here, the crucial argument is the coordinates function: it specifies for the
meuse data.frame which variables are spatial coordinates. In effect, it replaces
the data.frame meuse which has "just” two columns with coordinates with a
structure (of class SpatialPointsDataFrame) that knows which columns are
spatial coordinates. As a consequence, spplot knows how to plot the data in
map-form. If there is any function or data set for which you want help, e.g.
meuse, read the documentation: 7meuse , ?spplot etc.
A shorter form for coordinates is by assigning a formula, as in

> data(meuse)

> coordinates(meuse) = “x + y
> coordinates (meuse) [1:10, ]
> spplot(meuse, "zinc", key.space = "right")

The function coordinates without assignment retrieves the matrix with coor-
dinate values.

The plot now obtained shows points, but without reference where on earth
they lie. You could e.g. add a reference by showing the coordinate system:

> spplot(meuse, "zinc", key.space = "right", scales = list(draw = TRUE))

but this tells little about what we see. As another option, you can add geographic
reference by e.g. lines of rivers, or administrative boundaries. In our example,
we prepared the coordinates of (part of) the river Meuse river boundaries, and
will add them as reference:

data(meuse.riv)

dim(meuse.riv)

meuse.riv[1:10, ]

meuse.sp = SpatialPolygons(list(Polygons(1list(Polygon(meuse.riv)),
"meuse.riv")))

meuse.lt = list("sp.polygons", meuse.sp, fill = "grey")

spplot (meuse, "zinc", key.space = '"right", sp.layout = meuse.lt)

vV V + VvV VvVvyv
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SpatialRings, Srings and Sring create an sp polygon object from a simple
matrix of coordinates; the sp.layout argument contains map elements to be
added to an spplot plot.

Note that the points in the plot partly fall in the river; this may be attributed
to one or more of the following reasons: (i) the river coordinates are not correct,
(ii) the point coordinates are not correct, (iii) points were taken on the river
bank when the water was low, whereas the river boundary indicates the high
water extent of the river.

7.3.2 Grids

Try:

> data(meuse.grid)

> class (meuse.grid)

> coordinates (meuse.grid) = c("x", "y")

> class(meuse.grid)

> gridded(meuse.grid) = TRUE

> class (meuse.grid)

> summary (meuse.grid)

> meuse.lt = list(riv = list("sp.polygons", meuse.sp, fill = "grey"),
+ pts = list("sp.points", meuse, pch = 3, cex = 0.5, col = "black"))
> spplot(meuse.grid, sp.layout = meuse.lt, key.space = "right")

Here, gridded (meuse.grid) = TRUE promotes the (gridded!) points to a struc-
ture which knows that the points are on a regular grid. As a consequence they
are drawn with filled rectangular symbols, instead of filled circles. (Try the same
sequence of commands without the call to gridded() if you are curious what
happens if meuse.grid were left as a set of points).

For explanation on the sp.layout argument, read ?spplot; much of the
codes in them (pch, cex, col) are documented in ?par.

Note that spplot plots points on top of the grid, and the grid cells on top
of the polygon with the river. (When printing to pdf, transparency options can
be used to combine both.)

7.4 Import/export: rgdal

R package rgdal provides several drivers for import/export of spatial data. For
vector data (points, lines, polygons) an overview is obtained by

> library(rgdal)
> ogrDrivers ()

for grid data by
> gdalDrivers()

The full set of theoretically available drivers with documentation are given
here and here.
Export the data set to KML

> library(rgdal)
> data(meuse)
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> coordinates (meuse) = “x +y

> proj4string(meuse) = CRS("+init=epsg:28992")

> proj4string(meuse)

> meuse.ll = spTransform(meuse, CRS("+proj=longlat"))

> writeOGR(meuse.ll, "meuse.kml", "meuse.kml", driver = "KML")

and import it in google earth.

8 (Geostatistics

These practical exercises cover the use of geostatistical applications in environ-
mental research. They give an introduction to exploratory data analysis, sample
variogram calculation and variogram modelling and several spatial interpolation
techniques. Interpolation methods described and applied are inverse distance
interpolation, trend surface fitting, thiessen polygons, ordinary (block) kriging,
stratified (block) kriging and indicator (block) kriging.

The gstat R package is used for all geostatistical calculations. See:

E.J. Pebesma, 2004. Multivariable geostatistics in S: the gstat package.
Computers & Geosciences 30: 683-691 .

8.1 Exploratory data analysis

Identify the five largest zinc concentrations by clicking them on the plot:

library(sp)

sp. theme (TRUE)

data (meuse)

coordinates (meuse) = c("x", "y")

sel = spplot(meuse, "zinc", identify = TRUE)
sel

V V.V Vv VvyVv

Which points have the largest zinc concentration:

a 44 51 54 55 82
b 49 53 54 55 82
c 46 53 54 55 82
d 53 54 55 59 82

8.2 Simple interpolation algorithms
8.2.1 Trend surface analysis

Trend surface interpolation is multiple linear regression with polynomials of
coordinates as independent, predictor variables. Although we could use 1lm to
fit these models and predict them, it would require scaling of coordinates prior to
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prediction in most cases because higher powers of large coordinate values result
in large numerical errors. The krige function in library gstat scales coordinates
and computes trend surface up to degree 3, using scaled coordinates.

library(gstat)
data(meuse.grid)
coordinates (meuse.grid) = "x +y
gridded (meuse.grid) = TRUE
meuse.grid$trl = krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 1)$varl.pred
meuse.grid$tr2 = krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 2)$varl.pred
meuse.grid$tr3 = krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 3)$varl.pred
spplot (meuse.grid, c("trl", "tr2", "tr3"), sp.layout = meuse.lt,

main = "log(zinc), trend surface interpolation")

+ VVVVVVVYV

Function surf.ls from library spatial (described in the MASS book) fits
trends up to order 6 with scaled coordinates.

As you can see, Tkrige does not provide help on argument degree. However,
tells that any remaining arguments (...) are passed to function gstat, so look
for argument degree on 7gstat.

HAND IN: The danger of extreme extrapolation values is likely
to occur

a for low trend orders

b for high trend orders

¢ for none of these models

Briefly explain why this is the case.

Local trends, i.e. trends in a local neighbourhood may also be fitted:

> m = krige(log(zinc) ~ x + y, meuse, meuse.grid, nmax = 10)
> spplot(m, "varl.pred", sp.layout = meuse.lt, main = "local 1st order trend")

8.2.2 Inverse distance interpolation

Inverse distance interpolation calculates a weighted average of points in the
(by default global) neighbourhood, using weights inverse proportional to the
distance of data locations to the prediction location raised to the power p. This
power is by default 2:

> library(gstat)

> lzn.tp = idw(log(zinc) ~ 1, meuse, meuse.grid)

> spplot(lzn.tp, "varl.pred", sp.layout = meuse.lt, main = "log(zinc), inverse distance in
> meuse.grid$idp0.5 = idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 0.5)$varl.pred

> meuse.grid$idp02 = idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 2)$varl.pred

> meuse.grid$idp05 = idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 5)$varl.pred

> meuse.grid$idpl10 = idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 10)$varl.pred

> spplot (meuse.grid, c("idp0.5", "idp02", "idp05", "idp10"), sp.layout = meuse.lt,

+ main = "log(zinc), inverse distance interpolation")
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The argument set is a list because other parameters can be passed to gstat
using this list as well.

HAND IN: With a larger inverse distance power (idp), the
weight of the nearest data point

a becomes larger

b becomes smaller

¢ does not change

explain in words why this is the case.

8.2.3 Thiessen polygons

Thiessen polygons can be constructed (as vector objects) using the functions
in library tripack. Interpolation on a regular grid is simply obtained by using
e.g. inverse distance interpolation and a neighbourhood size of one (nmax = 1).
Combining the two:

plot(voronoi.mosaic(cc[, 1], ccl, 2]), do.points = FALSE, add = TRUE)
title("Thiessen (or Voronoi) polygon interpolation of log(zinc)")

> library(gstat)

> library(sp)

> 1zn.tp = krige(log(zinc) ~ 1, meuse, meuse.grid, nmax = 1)
> image(lzn.tp["varl.pred"])

> points(meuse, pch = "+", cex = 0.5)

> cc = coordinates (meuse)

> library(tripack)

>

>

8.3 Spatial prediction with multiple linear regression

In the data set meuse we have a large number of variables present that can be
used to form predictive regression models for either of the heavy metal variables.
If we want to use such a regression model for spatial prediction, we need the
variables as a full spatial coverage, e.g. in the form of a regular grid covering
the study area, as well. Only few variables are available for this in meuse.grid:

library(sp)
sp.theme (TRUE)
data(meuse)

names (meuse)
data(meuse.grid)
names (meuse.grid)

V V.V Vv \VvyVv

Now try:

v

coordinates (meuse) = c("x", "y")
coordinates (meuse.grid) = c("x", "y")
> gridded(meuse.grid) = TRUE

v
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VVVVVVVVYVYV

lzn.1lm = 1lm(log(zinc) ~ sqrt(dist), meuse)

summary (1zn.1lm)

plot(lzn.1m)

plot(log(zinc) ~ sqrt(dist), meuse)

abline(lzn.1lm)

lzn.pr = predict(lzn.lm, meuse.grid, se.fit = TRUE)
meuse.grid$lzn.fit = lzn.pr$fit

spplot (meuse.grid, "lzn.fit", sp.layout = meuse.lt)
meuse.grid$se.fit = lzn.pr$se.fit

spplot (meuse.grid, "se.fit", sp.layout = meuse.lt)

Why are prediction standard errors on the log-scale largest for

small and large distance to the river?

a Because variability is smallest for intermediate distance to river

b because the uncertainty in the regression slope is most prevalent when the
regressor distance takes extreme values

¢ because we have too few degrees of freedom for regression (i.e., too few
observations) overall

d because we have too little data close to the river and far away from the
river

We can use the prediction errors provided by 1m to calculate regression pre-

diction intervals:

>
>
>
>
>
>
>
>
>
>
>

plot(log(zinc) ~ sqrt(dist), meuse)

x = 0:100/100

lzn.1lm = 1m(log(zinc) ~ sqrt(dist), meuse)

pr = predict(lzn.lm, data.frame(dist = x), interval = "prediction")
abline(lzn.1lm)

lines(sqrt(x), prl[, 2], 1ty = "dashed", col = "red")

lines(sqrt(x), prl[, 3], 1ty = "dashed", col = "red")

pr = predict(lzn.lm, data.frame(dist = x), interval = "confidence")
lines(sqrt(x), prl[, 2], 1ty = "dashed", col = "blue")
lines(sqrt(x), pr[, 3], 1ty = "dashed", col = "blue")

title("95), confidence intervals (blue) and prediction intervals (red)")

Next, we can make maps of the 95% prediction intervals:

+ VVVyVvyVv

pr = predict(lzn.lm, as.data.frame(meuse.grid), interval = "prediction")

meuse.grid$fit = pr[, 1]

meuse.grid$upper = pr[, 3]

meuse.grid$lower = pr[, 2]

spplot (meuse.grid, c("fit", "lower", "upper"), sp.layout = meuse.lt,
layout = c(3, 1))
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Note that all these prediction intervals refer to prediction of single observa-
tions; confidence intervals for mean values (i.e., the regression line alone) are

obtained by specifying interval = "confidence".
Compared to prediction intervals, the intervals obtained by in-
terval = "confidence" are

a wider

b narrower

¢ of approximately equal width

Another regression model is obtained by relating zinc to flood frequency, try

> plot(log(zinc) ~ ffreq, meuse)

Why is a box-and whisker plot drawn for this plot, and not a

scatter plot?
e ffreq is a categorical variable with numeric levels
e ffreq has only three values, 1, 2 and 3

e flood frequency is allways expressed by boxes

What do the boxes in a box-and whisker plot refer to?
e the mean plus and minus one standard deviation of the group
e the 95% confidence interval for the mean

e the inter-quartile range (from 25-th to 75-th percentiles)

What is needed for flood frequency to use it for mapping zinc?

e it needs to be the number of times a grid cell floods
e it needs to be known at each prediction location (i.e., grid cells in meuse . grid

e it needs to be independent of distance to the river

Try the model in prediction mode:
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1zn.1m2 = 1m(log(zinc) ~ ffreq, meuse)

summary (1zn.1m2)

pr = predict(lzn.lm2, meuse.grid, interval = "prediction")

meuse.grid$fit = pr[, 1]

meuse.grid$upper = pr[, 3]

meuse.grid$lower = pr[, 2]

spplot (meuse.grid, c("fit", "lower", '"upper"), sp.layout = meuse.lt,
layout = c(3, 1))

+ VVVVVVYV

HAND IN: Why is the pattern obtained not smooth?

8.4  Spatial correlation: the h-scatterplot

Before we jump into h-scatterplots of spatial data, let us first (re-)consider
lagged scatterplots for temporal data.

HAND IN: create the lagged scatterplots for the T.outside vari-

able in the meteo data set, for lag 1 und 10. Compute and report the corre-
sponding correlations.

Read the help for function hscat in package gstat.

We will use this function to compute h-scatterplots. An h-scatterplot plots
data pairs z(z;), z(z;) for selected pairs that have |z; — x;| fall within a given
interval. The intervals are given by the third argument, (breaks).

> hscat(log(zinc) ~ 1, meuse, c(0, 30, 80, 100, 200, 300, 500,
+ 1000))

Why is there not a distance interval 0 — 30 in the plot?

HAND IN: how many point pairs can you form from 155 obser-

vations?

> hscat(log(zinc) ~ 1, meuse, c(0, 80, 120, 250, 500, 1200))

HAND IN: The correlation steadily drops with larger distance.

Why?

> hscat(log(zinc) ~ 1, meuse, c(0, 120, 300, 600, 1200))

How would you interpret the negative correlation for the largest

lag?
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8.5  Spatial correlation: the variogram cloud

As you could see, above the variogram cloud was used to get h-scatterplots. The
variogram cloud is basically the plot (or collection of plotted points) of

0.5(Z(z;) — Z(x))?

against
h = |z — ;]

in words: for each point pair z(x;), z(z;) half the squared difference in measured
values against the spatial separation distance.
Plot a variogram cloud for the log-zinc data:

> plot(variogram(log(zinc) ~ 1, meuse, cloud = TRUE))

Why are both distance and semivariance non-negative?

Why is there so much scatter in this plot?

How many points does the variogram cloud contain if the sepa-

ration distance is not limited?

Identify a couple of points in the cloud, and plot the pairs in a map by
repeating the following commands a couple of times. The following command
lets you select point pairs by drawing polygons around them. Please note the
use of the different keys on the mouse.

> out = plot(variogram(log(zinc) ~ 1, meuse, cloud = TRUE), digitize = TRUE)
> plot(out, meuse)

HAND IN: Where are the short-distance-high-variability point

pairs, as opposed to the short-distance-small-variability point pairs?

8.6 Spatial correlation: the variogram
A variogram for the log-zinc data is computed, printed and plotted by

> v = variogram(log(zinc) ~ 1, meuse)
> v
> plot(v)

How is the variogram computed from the variogram cloud?

e semivariance is averaged for each distance
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distance is averaged for each semivariance

distance is averaged for each semivariance class
e semivariance and distance are averaged for each distance class

e semivariance and distance are averaged for each semivariance class

8.7 Sample variogram and variogram model

To detect, or model spatial correlation, we average the variogram cloud values
over distance intervals (bins):

> lzn.vgm = variogram(log(zinc) ~ 1, meuse)
> 1zn.vgm
> plot(lzn.vgm)

For the maximum distance (cutoff) and bin width, sensible defaults are cho-
sen as one-third the largest area diagonal and 15 bins, but we can modify this
when needed by setting cutoff and width:

> lzn.vgm = variogram(log(zinc) ~ 1, meuse, cutoff = 1000, width = 50)
> 1zn.vgm
> plot(lzn.vgm)

What is the problem if we set width to e.g. a value of 57

a we get too many semivariance estimates
b the semivariance values are too large
¢ the semivariance values are too small

d the variability of the semivariance values is too large

HAND IN: What is the problem if we set the cutoff value to

e.g. a value of 500 and width to 507

For kriging, we need a suitable, statistically valid model fitted to the sample
variogram. The reason for this is that kriging requires the specification of semi-
variances for any distance value in the spatial domain we work with. Simply
connecting sample variogram points, as in

> 1zn.vgm = variogram(log(zinc) ~ 1, meuse, cutoff = 1000, width = 50)
> plot(gamma ~ dist, lzn.vgm)
> lines(c(0, 1zn.vgm$dist), c(0, lzn.vgm$gamma))
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will not result in a valid model. Instead, we will fit a valid parametric model.
Some of the valid parametric models are shown by e.g.

> show.vgms ()

These models may be combined, and the most commonly used are Exponential
or Spherical models combined by a Nugget model.
We will try a spherical model:

> lzn.vgm = variogram(log(zinc) ~ 1, meuse)
> plot(lzn.vgm)

> lzn.mod = vgm(0.6, "Sph", 1000, 0.05)

> plot(lzn.vgm, lzn.mod)

The range, 1000, relates to

a the semivariance value at distance (nearly) zero
b the semivariance value reached when the variogram stops increasing

¢ the distance value at which the variogram stops increasing

The sill, 0.6 + 0.05, relates to

a the semivariance value at distance (nearly) zero
b the semivariance value reached when the variogram stops increasing

¢ the distance value at which the variogram stops increasing

The nugget, 0.05, relates to

a the semivariance value at distance (nearly) zero
b the semivariance value reached when the variogram stops increasing

¢ the distance value at which the variogram stops increasing

The variogram model ("Sph" for spherical) and the three parameters were
chosen by eye. We can fit the three parameters also automatically:

> 1zn.vgm = variogram(log(zinc) ~ 1, meuse)

> lzn.mod = fit.variogram(lzn.vgm, vgm(0.6, "Sph", 1000, 0.05))
> lzn.mod

> plot(lzn.vgm, lzn.mod)
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but we need to have good "starting” values, e.g. the following will not yield a
satisfactory fit:

> lzn.misfit = fit.variogram(lzn.vgm, vgm(0.6, "Sph", 10, 0.05))
> plot(lzn.vgm, lzn.misfit)

HAND IN: Compute the variogram for four different direction
ranges (hint: look into argument alpha for function variogram) and plot it in
a single plot. Is the zinc process anisotropic? Try to explain what you find in
terms of what you know about the process.

8.8 Simple and ordinary kriging

Ordinary kriging is an interpolation method that uses weighted averages of all,
or a defined set of neighbouring, observations. It calculates a weighted average,
where weights are chosen such that (i) prediction error variance is minimal,
and (ii) predictions are unbiased. The second requirement results in weights
that sum to one. Simple kriging assumens the mean (or mean function) to be
known; consequently it drops the second requirement and the weights do not
have to sum to unity. Kriging assumes the variogram to be known; based on
the variogram (or the covariogram, derived from the variogram) it calculates
prediction variances.
To load everything you need into your workspace do

lzn.vgm = variogram(log(zinc) ~ 1, meuse)
lzn.mod = fit.variogram(lzn.vgm, vgm(0.6, "Sph", 1000, 0.05))

> library(gstat)

> sp.theme (TRUE)

> data(meuse.riv)

> meuse.sp = SpatialPolygons (list(Polygons(list (Polygon(meuse.riv)),
+ "meuse.riv")))

> meuse.lt = list(riv = list("sp.polygons", meuse.sp, fill = "grey"),
+ pts = list("sp.points", meuse, pch = 3, cex = 0.5, col = "black"))
> data(meuse.grid)

> coordinates (meuse.grid) = c("x", "y")

> gridded(meuse.grid) = TRUE

> data(meuse)

> coordinates(meuse) = “x + y

>

>

8.8.1 Weights

One main advantage of kriging compared to e.g. inverse distance weighting is
that it cares about clustering of the points where the values for prediction come
from.

Imagine you want to predict a value by three others. All three

points have the same distance from the point to predict, two of them are very
close together and the third one is on the opposite side of the point to predict.
Which weighting would you choose and why?
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a Equal weights on all points.
b Put more weight on the single point than on the two clustered ones.

¢ Put less weight on the single point than on the two clustered ones.

Download the EZ-Kriging tool to see how weighting is done by kriging (down-
load the .zip file and unzip it, than it can be started by clicking the icon) Use
it to answer the following questions.

HAND IN: Which of the following properties are true/false/the
opposite is true for inverse distance interpolation and for kriging, respectively?
a Points closer to the point to predict have more weight.

b Clustered points have more weight.

8.8.2 Influence of Variogram on Prediction

Use EZ-Kriging. Place 7 points, some in a cluster and the others on different
distances from the centre singularily. You may keep the values at the points.

The first parameter we look at is the nugget effect. Put the partial sill (c1)
to 0 and change the nugget effect (cl).

What happens to the weights, to the prediction and to the

prediction error?

Can you imagine how the interpolated map looks like? Try pure nugget
effect kriging on the log(zinc) data from meuse:

> vgm.nugget = vgm(psill = 0, model = "Exp", range = 1, nugget = 0.64)
> lzn.krige.nugget = krige(log(zinc) ~ 1, meuse, meuse.grid, vgm.nugget)
> spplot(lzn.krige.nugget, main = "Kriging with pure nugget effect")

HAND IN: How are clustered points weighted? How important is

the distance to the point to predict? Does pure nugget effect fit data with strong
spatial correlation or data where values in different points are uncorrelated?

What are the predicted values? Explain why this makes sense

here!

Next we explore the range. In EZ-Kriging put ¢l back to a medium value
(keep the exponential model). Try out different ranges.
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How is the influence of the range on weighting (compare very

small, medium and very big range)?

Try kriging for different ranges on the log(zinc) values.

> vgm.smallrange = fit.variogram(lzn.vgm, vgm(0.6, "Sph", 100,

+ 0.05))

> lzn.krige.smallrange = krige(log(zinc) ~ 1, meuse, meuse.grid,
+ vgm.smallrange)

> spplot(lzn.krige.smallrange, main = "Kriging with small range")

Repeat for range = 10000 (true range is about 1000).

HAND IN: Describe the main differences of the kriged map for

small/big range and compare the errors?

Given that 1zn.mod a suitable variogram model contains (see above), we can
apply ordinary kriging by

> 1zn.ok = krige(log(zinc) ~ 1, meuse, meuse.grid, lzn.mod)
> spplot(lzn.ok, "varl.pred", main = "log(zinc), ordinary kriging")

For simple kriging, we have to specify in addition the known mean value,
passed as argument beta:

lzn = krige(log(zinc) ~ 1, meuse, meuse.grid, lzn.mod, beta = 5.9)

1zn$sk = lzn$varl.pred

1zn$ok = lzn.ok$varl.pred

spplot(lzn, c("ok", "sk"), main = "log(zinc), ordinary and simple kriging")

vV V. VvV

Comparing the kriging standard errors:

1zn$sk.se = sqrt(lzn$varl.var)

lzn$ok.se = sqrt(lzn.ok$varl.var)

meuse.lt$pts$col = "green"

spplot(lzn, c("ok.se", "sk.se"), sp.layout = meuse.lt, main = "log(zinc), ordinary and s

vV VvV Vv VvV

HAND IN: Why is the kriging standard error not zero in grid

cells that contain data points?
a kriging standard errors are not zero on data points
b the data points do not coincide exactly with grid cell centres

¢ kriging standard errors do not depend on data locations, they only depend
on the variability of measured values

Explain your answer briefly.

Local kriging is obtained when, instead of all data points, only a subset of
points nearest to the prediction location are selected. If we use only the nearest
5 points:
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> 1zn.lok = krige(log(zinc) ~ 1, meuse, meuse.grid, lzn.mod, nmax = 5)
> 1zn$lok = lzn.lok$varl.pred
> spplot(lzn, c("lok", "ok"), main = "lok: local (n=5); ok: global")

When we increase the value of nmax, the differences between the
local and global kriging will

a become smaller
b become larger

¢ remain the same

Another, commonly used strategy is to select a kriging neighbourhood based
on spatial distance to prediction location. To exagerate the effect of distance-
based neighbourhoods, a very small neighbourhood is chosen of 200 m:

1zn.ok$lok2 = 1lzn.lok2$varl.pred
1zn.ok$ok = lzn.ok$varl.pred

+ V. VvV Vv Vv

sp.layout = meuse.lt, scales = list(draw = TRUE))

How can the gaps that now occur in the local neighbourhood

kriging map be explained? At these prediction locations
a the kriging neighbourhood is empty
b the kriging neighbourhood only contains a single observation

¢ the kriging neighbourhood contains less than 2 observations

1zn.sok2
beta = 5.9)
1lzn.ok$sok2 = lzn.sok2$varl.pred

+ VvV VvV + VvV

sp.layout = meuse.lt, scales = list(draw = TRUE))
Ordinary and simple kriging behave different in this latter aspect.
HAND IN: In the areas with gaps in the ordinary kriging map,
simple kriging yields
a the simple kriging mean value (5.9)

b a compromise between the mean value (5.9) and the nearest observation
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¢ a compromise between the mean value (5.9) and the nearest two or more
observations

Explain why this is the case.

Some texts advocate to choose search neighbourhood distances equal to the
range of the variogram, however there is no theoretical nor a practical justifi-
cation for this: weights of points beyond the correlation range are usually not
zero. Choosing a local neighbourhood may save time and memory when kriging
large data sets. In addition, the assumption of a global constant mean is weak-
ened to that of a constant mean within the search neighbourhood. Examine the
run time for the following problem: (interpolation of approximately 1000 points
with random values).

Randomly select approximately 1000 points:

> n.request = 1000
> pts = spsample(meuse.grid, n = n.request, type = "random")

See how many we obtained:

> n.obtained = dim(coordinates(pts))[1]
> n.obtained

Create nonsense data from a standard normal distribution; interpolate and plot
them:

dummy = SpatialPointsDataFrame(pts, data.frame(z = rnorm(n.obtained)))
system.time (dummy.ok <- krige(z ~ 1, dummy, meuse.grid, vgm(1,
"Exp", 300)))
system.time (dummy.lok <- krige(z ~ 1, dummy, meuse.grid, vgm(1,
"Exp", 300), nmax = 20))
dummy . ok$varl.local = dummy.lok$varl.pred
spplot (dummy.ok, c("varl.pred", "varl.local"), sp.layout = list("sp.points",
dummy, col = "black", cex = 0.2))

+ VvV + VvV + VvV

and compare the run time for global kriging to local kriging with the nearest 20
observations.

The gain in speed is approximately a factor

ad
b 10
c 20
d 60

Although not needed here, for exact timings, you can use system.time, but
then replace dummy.int = ... with dummy.int <- ... in the expression
argument.
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8.9 Universal kriging

Just like stratified kriging, universal kriging provides a less restrictive model
than ordinary kriging. Suppose the model for ordinary kriging is written as

Z(s) =m + e(s)

with Z(s) the observed variable Z at spatial location s, m a constant but un-
known mean value and e(s) an intrinsically stationary residual, we can write
stratified kriging as j models

Zj(s) =m; +ej(s),

j referring to the stratum: each stratum has a different mean and different
parameters describing the spatial correlation of e;, and e;(s) and ex(s) are
independent if j # k.

Universal kriging extends the ordinary kriging model by replacing the con-
stant mean value by a non-constant mean function:

Z(S) = ﬂo =+ ﬁle(S) + ...+ Bpo(S) + 6(8)

with ; the trend (i.e., regression) coefficients, and X;(s) p known predictor
functions (independent variables, regressors).

The hope is that the predictor functions carry information in them that
explains the variability of Z(s) to a considerable extent, in which case the resid-
ual e(s) will have lower variance and less spatial correlation compared to the
ordinary kriging case. To see that this model extends ordinary kriging, take
p = 0 and note that for that case g = m. Another simplification is that if
e(s) is spatially independent, the universal kriging model reduces to a multiple
linear regression model. One problem with universal kriging is that we need the
variogram of the residuals, without having measured the residuals.

As we’ve seen before, we can predict the zinc concentrations fairly well from
the sqrt-transformed values of distance to river:

> plot(log(zinc) ~ sqrt(dist), as.data.frame (meuse))

> 1zn.1lm = Im(log(zinc) ~ sqrt(dist), as.data.frame(meuse))
> summary(lzn.lm)

> abline(lzn.lm)

To compare the variograms from raw (but log-transformed) data and regres-
sion residuals, look at the conditioning plot obtained by

gstat(id = "raw data", formula = log(zinc) ~ 1, data = meuse)
gstat(g, id = "residuals", formula = log(zinc) ~ sqrt(dist),
data = meuse)

plot(variogram(g, cross = F), scales = list(relation = "same"),
layout = c(2, 1))

g
g

+ VvV + v Vv

How is the residual standard error from the regression model

above (1zn.1lm) related to the variogram of the residuals:

a it is half the mean semivariance of the raw data and that of the residuals
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b the square of the residual standard error (the residual variance) equals the
sill of the residual variogram

¢ it equals the range of the residual variogram
d it equals the sill of the residual variogram
d it equals the nugget of the residual variogram

e the residual variance (approximately) equals the nugget of the variogram

HAND IN: Why is the sill of the residual variogram much lower

than the sill of the variogram for the raw data?

When a regression model formula is passed to variogram, the variogram of
the residuals is calculated. When a model formula is passed to krige, universal
kriging is used.

Now model the residual variogram with an exponential model, say zn.res.m,
and apply universal kriging. Compare the maps with predictions from universal
kriging and ordinary kriging in a single plot (with a single scale), using spplot.

Where are the differences most prevalent:

a In areas with values for dist close to 0 and 1
b In areas with few data points

¢ In areas where both (a) and (b) are valid

Why are the differences happening exactly there?

a on locations far from measurements, interpolation relies heavily on the
estimated trend value; where dist is close to 0 or 1, the trend value is most
different from the value m used in ordinary kriging

b on locations far from measurements we are most uncertain about the true
values

¢ on locations where dist is close to 0 or 1, it was hard to collect data,
because these locations were hard to reach.

Now print the maps with prediction errors for ordinary kriging and universal
kriging with a single scale. See if you can answer the previous two questions in
the light of the differences between prediction errors.
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8.10 Regression coefficients

Gstat can be (mis-)used to obtain estimates under the full linear model with
spatial correlation. Try the following commands:

dummy = meuse.grid

gridded (dummy) = FALSE

meuse$Int = rep(l, length(meuse$zinc))

dummy$Int = rep(1, length(dummy$dist))

g = gstat(formula = log(zinc) ~ -1 + Int + sqrt(dist), data = meuse,
model = lzn.mod)

newdat = dummy[1:2, c("Int", "dist")]

newdat$Int = c(1, 0)

newdat$dist = c(0, 1)

newdat

out = as.data.frame(predict(g, newdat, BLUE = TRUE))[, 3:4]

out[, 2] = sqrt(out[, 2])

rownames (out) = c("Intercept", "sqrt(dist)")

colnames (out) = c("BLUE-estimate", "Std. error")

out

VVVVVVVVYV +VVVVYV

What is calculated here (two correct answers)?
a The universal kriging trend for log(zinc) at the points in newdat .
b The universal kriging prediction at these points.

¢ The universal kriging prediction at these points using only sqrt(dist) for
prediction.

d The value for the parameter 3 of the kriging trend.

Do the values calculated above depend on the location of

the point, why? Do they depend on the variogram (lzn.mod), why?

Compare the above obtained regression coefficients with those obtained from
function 1m

> summary (lm(log(zinc) ~ sqrt(dist), meuse))

HAND IN: explain why both sets of fitted coefficients, and their

standard errors, are different

8.11 Block kriging

We will try block kriging settings under the universal kriging model. Note that
the grid cell size of meuse.grid is 40:
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> gridparameters (meuse.grid)

meaning that blocks of size 400 are largely overlapping.

zn = krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, zn.res.m)
zn$pointkr = zn$varl.pred
zn40 = krige(log(zinc) ~
block = c(40, 40))
zn400 = krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, zn.res.m,
block = c (400, 400))
zn$block40 = zn40$varl.pred
zn$block400 = zn400$varl.pred
spplot(zn[c("pointkr", "block40", "block400")], as.table = TRUE)
zn$pointkr.se = sqrt(zn$varl.var)
zn$block40.se = sqrt(zn40$varl.var)
zn$block400.se = sqrt(zn400$varl.var)
spplot(zn[c("pointkr.se", "block40.se", "block400.se")], as.table = TRUE)

sqrt(dist), meuse, meuse.grid, zn.res.m,

VVVVVVV+ YV + YV VYV

HAND IN: Describe what happens if we change from point pre-

diction to block prediction of size 40, in terms of predictions and in terms of
prediction standard errors?

HAND IN: Describe what happens if we change from block pre-

diction for blocks of size 40 m to block prediction for blocks of size 400 m, in
terms of predictions and in terms of prediction standard errors?

You can select a particular point in an object of class SpatialPixels-—
DataFrame, based on coordinates, e.g. by

> cc = coordinates (meuse.grid)
> sel = which(cc[, 1] == 179500 & cc[, 2] == 331020)
> as(meuse.grid, "SpatialPointsDataFrame") [sel, ]

What is the average (predicted by kriging) value of log(zinc) in

the 400 x 400 block with center x = 179020, y = 3306207 What is the kriging
variance there? Why is the kriging variance lower than in the block with centre
in x = 180500, y = 3320207

HAND IN: give the four corner points of the block mentioned in
the previous exercise

Compare the lowest standard error found with the standard error of the
mean in a simple linear regression (with a mean only):

> summary (1m(log(zinc) ~ 1, meuse))
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grd = coordinates (meuse.grid)

midpoint = data.frame(x = mean(grd[, 1]), y = mean(grd[, 2]),
dist = mean(meuse.grid$dist))

coordinates (midpoint) = “x + y

zn.grid = krige(log(zinc) ~ sqrt(dist), meuse, midpoint, model = zn.res.m,
block = scale(grd, scale = FALSE))

+ VV + VvV

HAND IN: why is the block mean value for the mean of the com-

plete area different from the sample mean value of the log(zinc) observations?

8.12 Cokriging

g <- gstat(NULL, "logCd", log(cadmium) ~ 1, meuse)
g <- gstat(g, "logCu", log(copper) ~ 1, meuse)

g <- gstat(g, "logPb", log(lead) ~ 1, meuse)

g <- gstat(g, "logZn", log(zinc) ~ 1, meuse)

g

vm <- variogram(g)

vm.fit <- fit.lmc(vm, g, vgm(1, "Sph", 800, 1))
vm.fit

> plot(vm, vm.fit)

V VVVVYVVYV

Which of the parameters (nugget, partial sill, range, model type)

were fitted in the above call to fit.1lmc?

> cor(log(as.data.frame (meuse) [c("cadmium", "copper", "lead", "zinc")]))
Do a cokriging;:

> cokr = predict(vm.fit, meuse.grid)
> summary (cokr)

HAND IN: explain in language (without equations) what the

variables in the resulting object represent, and how they were computed

HAND IN: explain why all the prediction error covariances are

positive

We want to compute an index of toxicity of the soil, where the different
heavy metals are weighted according to their toxicity. The index is computed
as

I = 100logCd + 10logPb + logZn
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where logCd, logPb and logZn are the log-predictions as obtained above.

HAND IN: give the R commands to compute this index and to

show a map of it. Also give the commands to compute the standard error of
the index, taking the error covariances into account.

HAND IN: how much does the standard error of this toxicity

index change as a result of taking the covariances into account, as opposed to
ignoring them?

8.13 Cokriging: the undersampled case

Take a subsample of zinc, called meusel:

VVVVVYVVYV VVVVVVVYV

vV Vv

set.seed(1331)

sam = sample(155)

saml = sam[1:50]

sam2 = sam[-(1:50)]

meusel = meuse[saml, ]

meuse2 = meuse[sam2, ]

plot(meuse, col = 1, pch = 3)

plot (meusel, col = 3, pch = 1, add = TRUE)

create a multivariate object with subsample of zinc, and full sample of lead:

g = gstat(NULL, "logZinc", log(zinc) ~ 1, meusel)
g = gstat(g, "logLead", log(lead) ~ 1, meuse)
v12 = variogram(g)

plot(vi2)

vi2.fit = fit.lmc(vi2, g, vgm(l, "Sph", 900, 1))
vi2.fit

class(v12.fit)

plot(vi2, vi2.fit)

cokrige:

v12.pr = predict(v12.fit, meuse.grid)
spplot(vi2.pr, c("logZinc.pred", "logLead.pred"))
spplot(vi2.pr, c("logZinc.var", "logLead.var", "cov.logZinc.logLead"))

compare the differences of kriging the 50 observations of zinc with the cok-

riging of from 50 zinc and 155 lead observations:

vV VVV + V VYV

vi2.fit[1]

vl.pr = predict(vi2.fit[1], meuse.grid)

1t = list(list("sp.points", meuse2, pch = 3), list("sp.points",
meusel, pch = 2))

v12.pr$diffpr = vi12.pr$logZinc.pred - v1.pr$logZinc.pred

spplot(v12.pr["diffpr"], sp.layout = 1t)

v12.pr$diffse = sqrt(vi2.pr$logZinc.var) - sqrt(vl.pr$logZinc.var)

spplot(vi2.pr["diffse"], sp.layout = 1t)
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HAND IN: why are the standard errors smaller in the cokriging

case?

8.14 Kriging errors and confidence intervals

Given that we are not certain about zinc levels at locations where we did not
measure it (i.e., interpolated grid cells) we can classify them according to their
approximate confidence intervals, formed by using mean and standard error
(here: on the log scale).

ci = function(cutoff, mean, var, alpha = 0.05) {

p = 1 - pnorm(cutoff, mean, sqrt(var))

f = ifelse(p < alpha/2, "lower", ifelse(p < (1 - alpha/2),

"not dist.", "higher"))

factor(f, levels = c("lower", "not dist.", "higher"))
}
1zn.ok$ci250 = ci(log(250), lzn.ok$varl.pred, lzn.ok$varl.var)
1zn.ok$ci500 = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var)
1zn.ok$ci750 = ci(log(750), lzn.ok$varl.pred, lzn.ok$varl.var)
1zn.ok$cil000 = ci(log(1000), lzn.ok$varl.pred, lzn.ok$varl.var)

+ VVVVYV+ + + + + V

"grey!l, Ilredll))

HAND IN: for which fraction of the total area is zinc concentra-

tion lower than 500 ppm, with 95% confidence? Give the number of grid cells
for which this is the case, and describe where in the area they are situated.

For a single threshold, we can vary the confidence level by specifying alpha:

> 1zn.ok$ci001 = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var,

+ 0.01)

> 1zn.ok$ci005 = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var,

+ 0.05)

> 1zn.ok$ci010 = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var,

+ 0.1)

> 1zn.ok$ci050 = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var,

+ 0.5)

> spplot(lzn.ok, c("ci001", "ci005", "ci010", "ci050"), col.regions = c("green",
+ "grey", "red"))

HAND IN: which of these four maps has the highest confidence

level, and what is this level? Why are there gray areas on map ci050 at all?

Consider the object zn, created under the section of block kriging.

> zn$ok_point = ci(log(500), lzn.ok$varl.pred, lzn.ok$varl.var,
+ 0.05)
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> zn$uk_point = ci(log(500), zn$pointkr, zn$pointkr.se"2, 0.05)

> zn$uk_block40 = ci(log(500), zn$block40, zn$block40.se"2, 0.05)

> zn$uk_block400 = ci(log(500), zn$block400, zn$block400.se"2,

+ 0.05)

> spplot(zn, c("ok_point", "uk_point", "uk_block40", "uk_block400"),
+ col.regions = c("green", "grey", "red"))

HAND IN: compare the fraction classified as lower and higher

between ok_point and uk_point, and try to explain the difference

Exercise 100 | HAND IN: compare the fraction classified as lower and higher

between uk_point, uk_block40 and uk_block400, and try to explain the dif-
ference

8.15 Conditional simulation

Exercise 101 | HAND IN: create a sample of 12 conditional simulations, for

log-zinc concentrations, using the krige command, and plot them. Make sure
you set nmax to a limited value (e.g. 40). Compare the outcomes, and describe
in which respects they differ, and in which respect they are similar.

8.16 Cross validation

For cross validating kriging resulst, the functions krige.cv (univariate) and
gstat.cv (multivariate) can be used.

Exercise 102 | HAND IN: perform cross validation for three diffferent (e.g.

previously evaluated) kriging types/models using one of these two functions.
Compare the resulst at least based on (i) mean error, (ii) mean square error,
(iii) mean and variance of the z-score, and (iv) map of residuals (use function
bubble for the residual variable). Compare on the results, and compare them
to the ideal value for the evaluated statistics/graph.

9 Diffusion and partial differential equations

Consider the following function, that solves a 1-D diffusion equation, using back-
ward differencing, and plots the result. Do the following exercises after you
studied the material (slides/podcast) on differential equations. The following

> diffuse = function(x.end = 1000, release = 1000, n.end = 1000,
+ dx = 1, dt = 0.1, plot.start = 10, cols = rainbow(n.end),
+ dirichlet = TRUE, ylim = c(0, 100)) {
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u = rep(0, x.end)
u[x.end/2] = release
new = u
plot.new()
start = TRUE
for (n in 1:(n.end/dt)) {
if (dirichlet)
newl[c(1, x.end)] = 0
else {
new[1] = u[2]
new[x.end] = u[x.end - 1]
}
new[2:(x.end - 1)] = dt * (ul[1l:(x.end - 2)] - 2 * u[2:(x.end -
1)] + u[3:x.end])/(dx * dx) + u[2:(x.end - 1)]
if (n * dt > plot.start) {

if (start)
plot(new, type = "1", col = cols[n * dt], xlab = "x",
ylab = "u", ylim = ylim)

else lines(new, col = cols[n * dt])
start = FALSE

+ + + + + ++F++FFFE A+

If you want to safe graphs in an efficient way (for once, a bitmap), you could
use e.g.

> jpeg("diffl.jpg")

> out = diffuse()
> dev.off ()
Try the following:
> out = diffuse()
> out = diffuse(dt = 0.25)
> out = diffuse(dt = 0.49)
> out = diffuse(dt = 0.5)
> out = diffuse(dt = 0.51)
> out = diffuse(dt = 0.05)
> out = diffuse(dt = 0.49, n.end = 10000)

Exercise 103| [HAND IN:] Which process is described by this model (hint:

lecture)? What does it do?

Use the following commands to have a closer look

> out = diffuse(dt = 0.49, n.end = 3, x.end = 50, ylim = c(0, 500),
+ plot.start = 0)

42



Exercise 104 | What is the meaning of the different parameters (dt, dx, n.end,

x.end)? Try them! What can be seen on these plots compared to the initial
ones?

Exercise 105 | [HAND IN:] What happens if dt is close but below 0.5, at 0.5,

above 0.57 Find plots to show it, describe and explain with help of them.

Exercise 106 | How could the problem be solved (hint: change other param-

eters)?

Try

> out = diffuse(dt
> out = diffuse(dt

0.4, x.end = 100, n.end = 10000, dirichlet
0.4, x.end = 100, n.end = 10000, dirichlet =

Exercise 107 | What is the total (sum) of out, after the last time step, for the
last two commands? What has happened to the material released?

Exercise 108| What does the Dirichlet boundary condition mean for the

values?

Exercise 109 | [HAND IN:] In case of dirichlet =TRUE: What happens to the

released material until the last time step (calculate the total sum of out)? What
has happened at earlier time steps (calculate a few numbers to describe it)?

Exercise 110 | [HAND IN:| In case of dirichlet =FALSE: What are the condi-

tions at the boundaries? What happens to the released material (total sum of
out)?
Use the following command

> out = diffuse(x.end = 100, release = 1000, n.end = 1000, dx = 1,
+ dt = 0.4, dirichlet = FALSE)

Change one parameter at each step, the others shall stay in the original state.

What is the concentration (out) at the points 20 steps from
the release point after 1000 time steps (n.end = 1000)? Why? How does it
change when release is half 7 Why? How does it change when dt is half? Why?
How does it change when dirichlet = TRUE? Why?
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Exercise 112 | [HAND IN:] Hand in a short description of your plan for the

assignment: which data will you analyze, what kind of hypothesis do you want
to look at, which type of analysis methods will you use
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