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Sample Size for Conficence Intervals

Conficence Interval for mean µ at confidence level α
(e.g. α = 0.05)

µ ∈ [X̄ − t1−α
2
,df ·

s√
n
, X̄ + t1−α

2
,df ·

s√
n

]

X̄ : sample mean; s2: sample variance; n: sample size; t1−α/2,df ; (1− α
2

)-quantile of

t-distribution

Therefore the confidence interval of width W = 2 · t1−α
2
,df · s√

n

can be obtained by sample size

n =
(

2 · t1−α
2
,df ·

s

W

)2



Type II Error / Power

For fixed alternative H0: µ = µ0; HA: µ = µA

Type I error, α: reject H0 even if it is true
Type II error, β: not reject H0 even if it is false
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Controlling Power (alternative fixed)

Power (1− β) can be increased by

increasing α

Sachs & Hedderich, p.315,

changed

small SE = σ√
n

(by

big sample size n)

Wonnacott & Wonnacott,

p.307, changed

using one-sided tests

Sachs & Hedderich, p.316,

changed
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Power dependent on alternative

Very different alternatives are easier to detect than very similar
alternatives.
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power.t.test()

For given n = 10, α = 0.05, δ = 2, s = 1.36 the power can be
computed with

> power.t.test(n = 10, sig.level = 0.05, delta = 2, sd = 1.36,

+ power = NULL)

Two-sample t test power calculation

n = 10

delta = 2

sd = 1.36

sig.level = 0.05

power = 0.8746395

alternative = two.sided

NOTE: n is number in *each* group

setting n = NULL computes required sample size . . .



General Concept of Statistical Tests I

a lot of information strong decision
Test⇒

little information weak decision

examples:
information
big sample
narrow distribution
known (normal) distribution

unknown distribution
skewed, wide distribution
...

decision
narrow confidence intervals
small p-value (strong rejection of
H0)
high p-value (H0 can not be
rejected)
high significance level (type I error:
α = 10%)
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paired t-test

If data is given in pairs, we can
investigate the mean difference in each
pair instead of the difference of the
means of each group.
Thus we keep other factors constant
and often increase power.

obj t1 t2

1 13.5 12.7
2 15.3 15.1
3 7.5 6.6
4 10.3 8.5
5 8.7 8.0

examples:

I value: N concentration in soil; obj: boreholes at different
locations; t1 / t2: before / after use of fertilizer; question:
What is the average effect of the fertilizer if location is fixed?

I value: ozone concentration in air; obj: different stations; t1 /
t2: 7:00 / 15:00; question: How much does ozone
concentration change between 7:00 and 15:00?

I value: ozone concentration in air; obj: different dates / hours;
t1 / t2: two different stations; question: How much do the
concentrations at the two stations differ?
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significant 6= important

significant distinguishable; depends on test (big sample → high
significance)
Can we be sure that there really is a difference?

important should influence decision; depends on purpose
Is the difference big enough so we should not ignore it?

example
A new fertilizer was tested at 1000 field patches. The wheat yield
was with very high significance (p < 0.005) increased by 1% (on
average 6.43 t/ha instead of 6.37 t/ha).
The fertilizer thus has an significant effect. But the effect is small
and may not be important enough to satisfy the unknown side
effects, the costs of new production machines...
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ANOVA: analysis of variance

The data are nominal values (Length), which
are separated into several groups by a factor
(I.am.).
Are the means of the groups equal?

H0 : µ1 = µ2 = · · · = µa

µ1 =mean(Length[I.am. == "small"]) . . . ; a: number of groups

How much of the variance of the values is due
to the difference between groups compared to
the variability within the groups (does the
factor explain any of the variability)?

Length I.am.
1 165 small
2 176 small
3 158 small
4 174 small
5 180 medium
6 180 medium
7 163 medium
8 187 medium
9 180 tall
10 189 tall
11 173 tall
12 185 tall
13 165 small
14 159 small
15 160 small
16 159 small
17 183 medium
18 165 medium
19 163 medium
20 183 medium
21 182 tall
22 188 tall
23 185 tall
24 188 tall
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Why use ANOVA?

Suppose we have three groups.

ANOVA H0: µ1 = µ2 = µ3

alternative HA: at least one mean is different from the others

t-tests Ha
0 : µ1 = µ2, Hb

0 : µ2 = µ3, Hc
0 : µ1 = µ3.

I It is possible that the first two are rejected but not the third.
How to explain?

I Each t-test needs many observations to be powerful, given the
same sample size ANOVA has more power. In our example
ANOVA has df = 21, each t-test would have df = 7.
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test statistic: F value

F̂ =
variance between groups (explained variance)

variance within groups (unexplained variance)

=
n · Var(x̄i )
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F test
I If the factor explains a lot of the variability, F̂ is high.

A model with many groups is likely to ”explain” much of the
variability even if there is no real difference.

I If H0 is true, F̂ follows a F -distribution with a− 1
(numerator) and a(n − 1) (denominator) degrees of freedom

I p value: p = 1 - pf(F̂, a - 1, a(n - 1))
(probability to have such a high F̂ even if all means are equal)
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d.f = (3,3)
d.f = (3,6)
d.f. = (3,30)
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the ANOVA table

deg. of freedom sum squared mean squared F p

factor A dfA = a − 1 SSA = n
P

i (x̄i. − ¯̄x..)2 MSA = SSA/dfA FA = MSA/MSE 1− pt(FA, dfA, dfE )

residuals dfE = a(n − 1) SSE =
P

i

P
j (xij − x̄i.)2 MSE = SSE/dfE

> summary(aov(Length ~ I.am., sample))

Df Sum Sq Mean Sq F value Pr(>F)
I.am. 2 1492.33 746.17 12.501 0.0002656 ***
Residuals 21 1253.50 59.69
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



properties of F̂

If there are 2 groups, F̂ = t̂2 and the p value is equal to the one of
the two-sample t-test.

The total error is the sum of explained and unexplained error

a∑
i=1

n∑
j=1

(xij − ¯̄x..)
2 = SSA + SSE



General Concept of Statistical Tests II

assumptions results
completely satisfied exactly true

Test⇒
only partially satisfied only approximatively true

In reality, assumptions are hardly ever exactly satisfied, this does not mean that results
are useless but we should be careful and find out how badly the assumptions are
violated.

Assumptions of ANOVA (can be checked by plot(aov(Length ~
I.am., sample)))
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I equal variance in each group (vertical line in ”Scale-Location”)
I normal distribution of residuals (points on line in ”Normal
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General Concept of Statistical Tests II

assumptions results
completely satisfied exactly true

Test⇒
only partially satisfied only approximatively true

In reality, assumptions are hardly ever exactly satisfied, this does not mean that results
are useless but we should be careful and find out how badly the assumptions are
violated.

Assumptions of ANOVA (can be checked by plot(aov(Length ~
I.am., sample)))
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two-way ANOVA

ANOVA can also be used if there are several factors (I.am. and
Year) grouping the data.

Length I.am. Year
1 165 small 8
2 176 small 8
3 158 small 8
4 174 small 8
5 180 medium 8
6 180 medium 8
7 163 medium 8
8 187 medium 8
9 180 tall 8
10 189 tall 8
11 173 tall 8
12 185 tall 8
13 165 small 9
14 159 small 9
15 160 small 9
16 159 small 9
17 183 medium 9
18 165 medium 9
19 163 medium 9
20 183 medium 9
21 182 tall 9
22 188 tall 9
23 185 tall 9
24 188 tall 9

For each factor an analysis of variance is
conducted

I.am. H0: µsmall = µmedium = µtall

Year H0: µ8 = µ9

The variance is explained by adding the
effects of both variables, the residuals
are now

SSE =
∑

i

∑
j

∑
k

(xijk− x̄i ..− x̄.j .+ ¯̄x...)
2
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2 way ANOVA in pictures I: data

The pictures shall illustrate the ideas of 2 way ANOVA using artificial values.

data

length

fe
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tall medium small

global mean ¯̄x...
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2 way ANOVA in pictures II: factor effects

Effect of ”I.am.”
x̄tall .. > x̄medium.. > x̄small ..
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Effect of ”Gender”
x̄.male. > x̄.female.
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2 way ANOVA in pictures III: added effects

Effects added give value for each
factor combination

fe
m
al
e

m
al
e

tall medium small

length

fe
m
al
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m
al
e

tall medium smalltall medium small

example:
x̄.female. = ¯̄x... − 2
x̄small .. = ¯̄x... − 7
therefore x̄smallfemale. = ¯̄x... − 9
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more ANOVA

Analysis of variance has more versions which can deal with

I unbalanced samples (unequal group sizes)

I more than 2 factors

I interactions (is the difference between tall male and small
male bigger than between tall female and small female?)

I random effects (take 12 samples from year 8 and 9 each, the
number of small / medium / tall is not fixed in advance)

I . . .
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