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Sample Size for Conficence Intervals

Conficence Interval for mean p at confidence level «
(e.g. & =0.05)

peX— t1-2.d X+ t1—2.df -

T G,

2: sample variance; n: sample size; ti—ay2,dfs (1 — 5)-quantile of

X: sample mean; s
t-distribution
Therefore the confidence interval of width W =2 - tl_%7df‘ .

7
can be obtained by sample size

s \2
n= (2 Th-gdr W)



Type Il Error / Power

For fixed alternative Ho: p = po; Ha: = pa
Type | error, a:: reject Hy even if it is true
Type Il error, 3: not reject Hy even if it is false

04

A o 2 4
test result
truth Hp not rejected \ Hp rejected ‘
Hp true OK, (1 —«) Type | error, «
Hp false || Type Il error, 5| OK, (1 — f3), power
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Controlling Power (alternative fixed)

Power (1 — /3) can be increased by

increasing «
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Power dependent on alternative

Very different alternatives are easier to detect than very similar

alternatives.
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Power dependent on alternative

Very different alternatives are easier to detect than very similar
alternatives.

distinct alternative
Power (1 — (3) dependent on
. difference of alternatives

0.4

" e (0 = pa — o)
o | small: for small sample, small «
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power.t.test()

For given n =10, o« = 0.05, § =2, s = 1.36 the power can be

computed with

> power.t.test(n = 10, sig.level = 0.05, delta

+ power = NULL)
Two-sample t test power calculation
n =10
delta = 2
sd = 1.36
sig.level = 0.05
power = 0.8746395
alternative = two.sided

NOTE: n is number in *each* group

2,

setting n = NULL computes required sample size ...

sd = 1.36,
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General Concept of Statistical Tests |

a lot of information

little information

examples:
information
big sample
narrow distribution
known (normal) distribution

unknown distribution
skewed, wide distribution

strong decision
Test
=

weak decision

decision

narrow confidence intervals

small p-value (strong rejection of
Ho)

high p-value (Hop can not be
rejected)

high significance level (type | error:
a=10%)
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paired t-test

If data is given in pairs, we can
investigate the mean difference in each
pair instead of the difference of the
means of each group.
Thus we keep other factors constant
and often increase power.

examples:
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paired t-test

If data is given in pairs, we can obj t to
investigate the mean difference in each 1 135 127
pair instead of the difference of the 2 153 15.1
means of each group. 3 75 6.6
4
5

Thus we keep other factors constant 10.3 8.5
and often increase power. 8.7 8.0
examples:

» value: N concentration in soil; obj: boreholes at different
locations; t1 / t2: before / after use of fertilizer; question:
What is the average effect of the fertilizer if location is fixed?

> value: ozone concentration in air; obj: different stations; t1 /
t2: 7:00 / 15:00; question: How much does ozone
concentration change between 7:00 and 15:007

> value: ozone concentration in air; obj: different dates / hours;
tl / t2: two different stations; question: How much do the
concentrations at the two stations differ?
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two sample t-test: difference of means
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two sample t-test: difference of means paired t-test: mean differences
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two sample t-test: difference of means paired t-test: mean differences
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1 2 3 4 5 1 2 3 4 5
object object
equal? equal to 0?

S N ——
t.test(xl, x2, var.equal = t.test(xl, x2, var.equal =
TRUE) TRUE, paired = TRUE)

Cl: -4.11 5.87 Cl: 0.16 1.60

p: 0.70 p: 0.03



significant # important

significant distinguishable; depends on test (big sample — high
significance)
Can we be sure that there really is a difference?

example

A new fertilizer was tested at 1000 field patches. The wheat yield
was with very high significance (p < 0.005) increased by 1% (on
average 6.43 t/ha instead of 6.37 t/ha).

The fertilizer thus has an significant effect. But the effect is small
and may not be important enough to satisfy the unknown side
effects, the costs of new production machines...



significant # important

significant distinguishable; depends on test (big sample — high
significance)
Can we be sure that there really is a difference?
important should influence decision; depends on purpose
Is the difference big enough so we should not ignore it?

example

A new fertilizer was tested at 1000 field patches. The wheat yield
was with very high significance (p < 0.005) increased by 1% (on
average 6.43 t/ha instead of 6.37 t/ha).

The fertilizer thus has an significant effect. But the effect is small
and may not be important enough to satisfy the unknown side
effects, the costs of new production machines...
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The data are nominal values (Length), which
are separated into several groups by a factor
(I.am.).

Are the means of the groups equal?

Ho:p1=po="=pa
1 —mean(Length[I.am. == "small"l) ...; a: number of groups
How much of the variance of the values is due
to the difference between groups compared to
the variability within the groups (does the
factor explain any of the variability)?



ANOVA: analysis of variance

The data are nominal values (Length), which
are separated into several groups by a factor
(I.am.).

Are the means of the groups equal?

Ho:p1=po="=pa
1 —mean(Length[I.am. == "small"l) ...; a: number of groups
How much of the variance of the values is due
to the difference between groups compared to
the variability within the groups (does the
factor explain any of the variability)?

Length l.am.
1 165 small
2 176 small
3 158 small
4 174 small
5 180 medium
6 180 medium
7 163 medium
8 187 medium
9 180 tall
10 189 tall
11 173 tall
12 185 tall
13 165 small
14 159 small
15 160 small
16 159 small
17 183 medium
18 165 medium
19 163 medium
20 183 medium
21 182 tall
22 188 tall
23 185 tall
24 188 tall
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alternative Ha: at least one mean is different from the others
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Why use ANOVA?

Suppose we have three groups.

ANOVA Ho: p1 = p2 = pi3
alternative Ha: at least one mean is different from the others

t-tests Hg : p1 = po, H(I)J Do = p3, HS o = ps.
» It is possible that the first two are rejected but not the third.
How to explain?
» Each t-test needs many observations to be powerful, given the
same sample size ANOVA has more power. In our example
ANOVA has df = 21, each t-test would have df = 7.



test statistic: F value
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test statistic: F value

samplesLength

165 170 175 180 185 190

160

variance between groups (explained variance)

variance within groups (unexplained variance)
n - Var(x;)

xjj: values, i is index for group

number of groups
number of values within each group (equal)

_ 15 i
=< Zj:l xjj: mean of group i
32, xi.: overall mean

1 a 2. H

= ;=7 >_i—1S;: pooled variance

'><II ~>§I ; m

0
TN

small

medium

samplesl.am.

tall



F test

» If the factor explains a lot of the variability, Fis high.
A model with many groups is likely to "explain” much of the
variability even if there is no real difference.
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F test

» If the factor explains a lot of the variability, Fis high.
A model with many groups is likely to "explain” much of the
variability even if there is no real difference.

> If Hp is true, F follows a F-distribution with a — 1
(numerator) and a(n — 1) (denominator) degrees of freedom
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F test

df(x, 1, 1)

>

>

15

1.0

0.5

0.0

If the factor explains a lot of the variability, Fis high.

A model with many groups is likely to "explain” much of the
variability even if there is no real difference.

If Ho is true, F follows a F-distribution with a — 1
(numerator) and a(n — 1) (denominator) degrees of freedom
pvalue: p = 1 - pf(l:_, a-1, atn - 1))

(probability to have such a high F even if all means are equal)

)
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WOWENE

w2
=)
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ANOVA table

mean squared F P

| deg. of freedom sum squared
Fa = MSa/MSg 1 — pt(Fy, dfa, dfg)

factor A | dfg =a—1 SSa=n>; (% —%.)? MS, = SSp/dfa
residuals dfg = a(n — 1) SSg =3, ZJ-(X,-J- —x.)? MSg = SSg /dfg

> summary(aov(Length ~ I.am., sample))

Df Sum Sq Mean Sq F value Pr (>F)
I.am. 2 1492.33 746.17 12.501 0.0002656 ***
Residuals 21 1253.50 59.69

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1



properties of F

If there are 2 groups, F = 12 and the p value is equal to the one of
the two-sample t-test.

The total error is the sum of explained and unexplained error

a n
> (xj—%.)*=SSa+ SSe

i=1 j=1



General Concept of Statistical Tests Il

assumptions results
completely satisfied exactly true
Test
=
only partially satisfied only approximatively true

In reality, assumptions are hardly ever exactly satisfied, this does not mean that results
are useless but we should be careful and find out how badly the assumptions are
violated.

Assumptions of ANOVA (can be checked by plot (aov(Length
I.am., sample)))

Constant Leverage:
Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Factor Levels
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» equal variance in each group (vertical line in "Scale-Location”)



General Concept of Statistical Tests Il

assumptions results
completely satisfied exactly true
Test
=
only partially satisfied only approximatively true

In reality, assumptions are hardly ever exactly satisfied, this does not mean that results
are useless but we should be careful and find out how badly the assumptions are
violated.

Assumptions of ANOVA (can be checked by plot (aov(Length
I.am., sample)))

Constant Leverage:
Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Factor Levels

o 8 o e ° . o8

[Standardized residualsl
Standardized residuals

o1

w0 7 o7 sis
T T

lLam.© j
165 170 175 180 2 1 0o 1 2 165 170 175 180 Small  medum tal

Fitted values Theoretical Quantiles Fitted values Factor Level Combinations

» equal variance in each group (vertical line in "Scale-Location”)
» normal distribution of residuals (points on line in "Normal

Q-Q")
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two-way ANOVA

ANOVA can also be used if there are several factors (I.am. and
Year) grouping the data.

Length l.am. Year
1 165 small 8
: e small 8 For each factor an analysis of variance is
small 8
4 174 small 8
5 180 medium 8 CondUCted
6 180 medium 8
7 163 medium 8
8 187 medium 8
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12 189 L s The variance is explained by adding the
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15 160 small 9
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two-way ANOVA

ANOVA can also be used if there are several factors (I.am. and

Year) grouping the data.

Length l.am. Year

1 165 small 8
2 176 small 8
3 158 small 8
4 174 small 8
5 180 medium 8
6 180 medium 8
7 163 medium 8
8 187 medium 8
9 180 tall 8
10 189 tall 8
11 173 tall 8
12 185 tall 8
13 165 small 9
14 159 small 9
15 160 small 9
16 159 small 9
17 183 medium 9
18 165 medium 9
19 163 medium 9
20 183 medium 9
21 182 tall 9
22 188 tall 9
23 185 tall 9
9

24 188

tall

For each factor an analysis of variance is
conducted

l.am. Ho: fismall = [imedium = tall

The variance is explained by adding the
effects of both variables, the residuals
are now

SSE= D> (xj—%i. — % +%.)°
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two-way ANOVA

ANOVA can also be used if there are several factors (I.am. and

Year) grouping the data.

Length l.am. Year

1 165 small 8
2 176 small 8
3 158 small 8
4 174 small 8
5 180 medium 8
6 180 medium 8
7 163 medium 8
8 187 medium 8
9 180 tall 8
10 189 tall 8
11 173 tall 8
12 185 tall 8
13 165 small 9
14 159 small 9
15 160 small 9
16 159 small 9
17 183 medium 9
18 165 medium 9
19 163 medium 9
20 183 medium 9
21 182 tall 9
22 188 tall 9
23 185 tall 9
9

24 188

tall

For each factor an analysis of variance is
conducted

l.am. Ho: fismall = [imedium = tall
Year Hp: pg = g

The variance is explained by adding the
effects of both variables, the residuals
are now

SSE=Y D> (xjw—%i. — % +%.)°
ik



2

way ANOVA in pictures |: data

The pictures shall illustrate the ideas of 2 way ANOVA using artificial values.
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2 way ANOVA in pictures |: data

The pictures shall illustrate the ideas of 2 way ANOVA using artificial values.

data
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length length

° R —
] — < —
£ g

% — % —

€ . £

tall medium small - tall medium small




2 way ANOVA in pictures |: data

The pictures shall illustrate the ideas of 2 way ANOVA using artificial values.

data global mean X

S  —
length length

R — . —
g f— ks —

2 — 2 —

£ . £

tall medium small  w== tall medium small




2 way ANOVA in pictures II: factor effects

length length
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2 way ANOVA in pictures II: factor effects

Effect of "l.am.”

Xtall.. > Xmedium.. > Xsmall..

=

length

male

tall

male

length

medium

male
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2 way ANOVA in pictures II: factor effects

Effect of "l.am.”

Xtall.. > Xmedium.. > Xsmall..

=

length

Q@
© —
£

) —

©

£

tall medium small s

Effect of "Gender”

)_(ma/e. > X female.

male

tall

—
length
}-4
=1
e e -




2 way ANOVA in pictures Ill: added effects
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2 way ANOVA in pictures Ill: added effects

Effects added give value for each
factor combination
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2 way ANOVA in pictures Ill: added effects

Effects added give value for each

factor combination

S
length

| — example:

| e i
i X female. = X.. — 2
- )_<small.. =X. - 7
therefore Xsmaifemale. = X.. — 9

male

male

tall medium small
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Analysis of variance has more versions which can deal with
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unbalanced samples (unequal group sizes)
more than 2 factors

interactions (is the difference between tall male and small
male bigger than between tall female and small female?)

random effects (take 12 samples from year 8 and 9 each, the
number of small / medium / tall is not fixed in advance)
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