

# Introduction to Geostatistics

Confidence intervals II: confidence intervals for differences, and  
in general.

Edzer Pebesma

[edzer.pebesma@uni-muenster.de](mailto:edzer.pebesma@uni-muenster.de)  
Institute for Geoinformatics (**ifgi**)  
University of Münster

June 1, 2010

# The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ NOT of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  - ▶ when the sample size is large enough
  - ▶ when is a sample large enough? (usually:  $n > 30$ )

# The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
  - ▶ of the estimation error of the mean,  $\bar{X} - \mu$
  - ▶ When is this assumption justified?
    - ▶ Central Limit Theorem
    - ▶ Rule of thumb:  $n \geq 30$
    - ▶ when is a sample large enough? (usually:  $n > 30$ )

# The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  - 3. when the data are (close to) normally distributed OR
  - when the sample size is large enough
- ▶ when is a sample large enough? (usually:  $n > 30$ )

# The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  1. when the data are (close to) normally distributed **OR**
  2. when the sample size is large enough
- ▶ when is a sample large enough? (usually:  $n > 30$ )

## The normal assumption

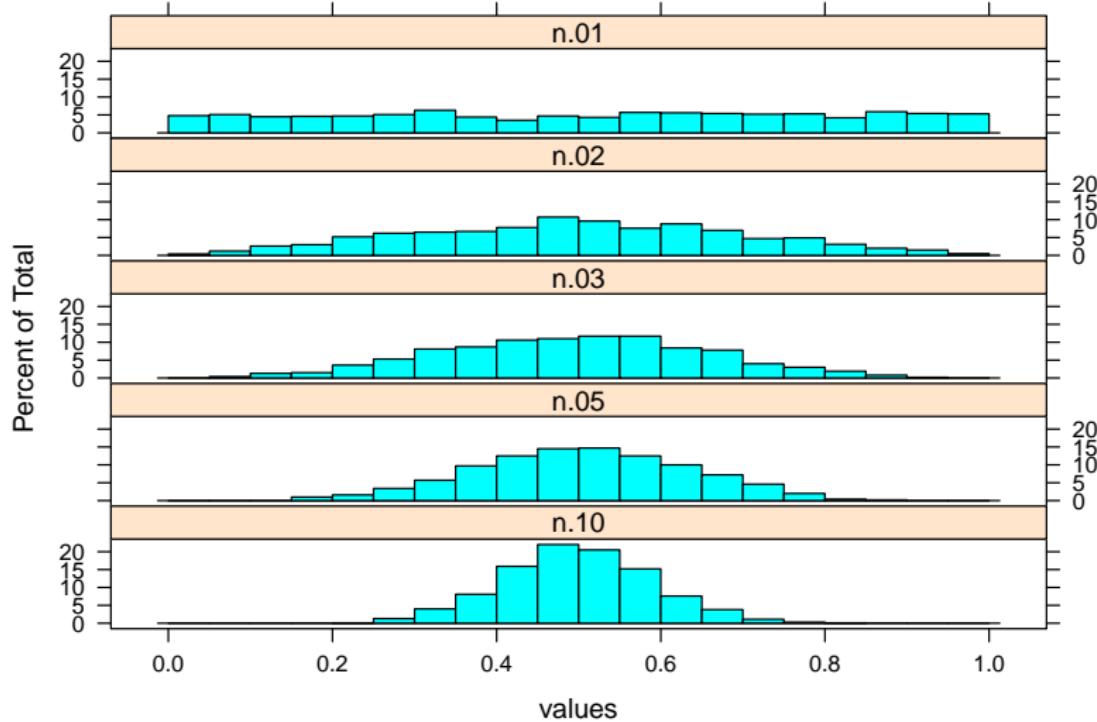
- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  1. when the data are (close to) normally distributed **OR**
  2. when the sample size is large enough
- ▶ when is a sample large enough? (usually:  $n > 30$ )

# The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  1. when the data are (close to) normally distributed **OR**
  2. when the sample size is large enough
- ▶ when is a sample large enough? (usually:  $n > 30$ )

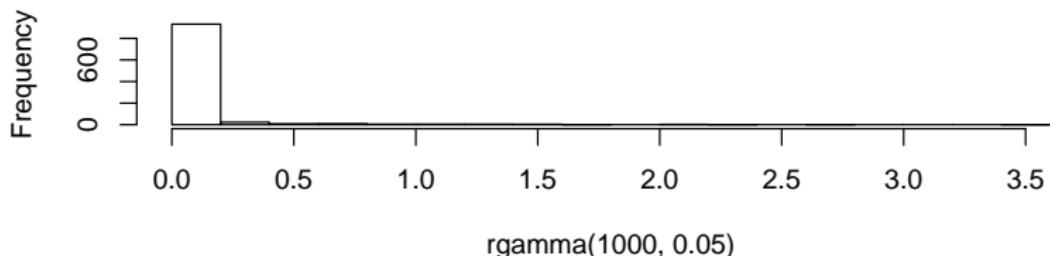
## The normal assumption

- ▶ When computing confidence intervals based on the normal distribution ( $\sigma$  known) or  $t$ -distribution ( $\sigma$  unknown) we assume normality. But normality of what?
- ▶ **NOT** of the data,  $X_i$ , but
- ▶ of the estimation error of the mean,  $\bar{X} - \mu$
- ▶ When is this assumption justified?
  1. when the data are (close to) normally distributed **OR**
  2. when the sample size is large enough
- ▶ when is a sample large enough? (usually:  $n > 30$ )

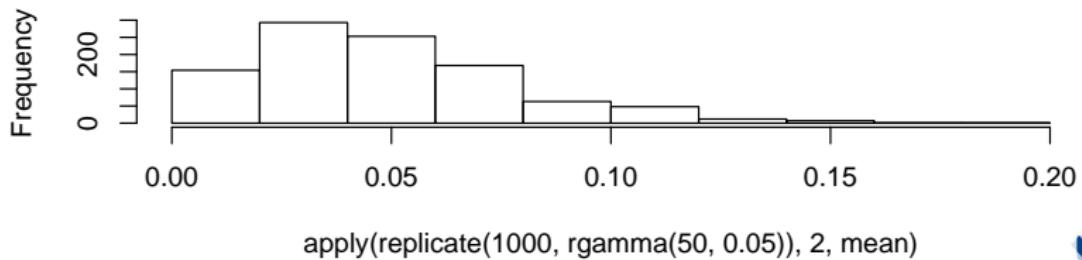


An example where it does not work out:

**gamma distribution, shape = 0.05**



**means of random samples with size 50: still far from normal**



# Why does this normality thing work?

## The central limit theorem:

Loosely, this theorem states that if we take a sum of  $n$  independent random variables **with an arbitrary distribution**,

$$Y = \sum_{i=1}^n X_i$$

then, when  $n$  grows larger, then the distribution of  $Y$  will converge to a normal distribution. As the mean is also a sum, this applies to sample means. How fast is the convergence?

## Why does this normality thing work?

### The central limit theorem:

Loosely, this theorem states that if we take a sum of  $n$  independent random variables **with an arbitrary distribution**,

$$Y = \sum_{i=1}^n X_i$$

then, when  $n$  grows larger, then the distribution of  $Y$  will converge to a normal distribution. As the mean is also a sum, this applies to sample means. How fast is the convergence?

## Why does this normality thing work?

### The central limit theorem:

Loosely, this theorem states that if we take a sum of  $n$  independent random variables **with an arbitrary distribution**,

$$Y = \sum_{i=1}^n X_i$$

then, when  $n$  grows larger, then the distribution of  $Y$  will converge to a normal distribution. As the mean is also a sum, this applies to sample means. How fast is the convergence?

## CI for the difference in means; independent samples

Suppose we have two samples, and are interested in the difference in their means. We can now form a confidence interval for  $\mu_1 - \mu_2$ . What is the standard error for  $\bar{X}_1 - \bar{X}_2$ ? Suppose  $\sigma_1 = \sigma_2$ , then

$$SE = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \left[ \frac{1}{n_1} + \frac{1}{n_2} \right]}$$

and the 95% confidence interval is

$$Pr((\bar{X}_1 - \bar{X}_2) - t_{df, \alpha} SE \leq \mu_1 - \mu_2 \leq (\bar{X}_1 - \bar{X}_2) + t_{df, \alpha} SE) = .95$$

The usual interest lies in whether this interval contains zero.

## CI for the difference in means; independent samples

```
> t.test(Length ~ Gender, var.equal = TRUE)
```

```
Two Sample t-test
```

```
data: Length by Gender
```

```
t = -13.3724, df = 245, p-value < 2.2e-16
```

```
alternative hypothesis: true difference in means is not equal to 0
```

```
95 percent confidence interval:
```

```
-15.25146 -11.33533
```

```
sample estimates:
```

```
mean in group female    mean in group male
```

```
169.8495
```

```
183.1429
```

## CI for the difference in means; paired samples

Paired samples: a single object has been measured twice (usually at two moments, or "before" and "after" treatment)

| obj | $t_1$ | $t_2$ |
|-----|-------|-------|
| 1   | 13.5  | 12.7  |
| 2   | 15.3  | 15.1  |
| 3   | 7.5   | 6.6   |
| 4   | 10.3  | 8.5   |
| 5   | 8.7   | 8.0   |

```
> x1 = c(13.5, 15.3, 7.5, 10.3, 8.7)
> x2 = c(12.7, 15.1, 6.6, 8.5, 8)
> x1 - x2
[1] 0.8 0.2 0.9 1.8 0.7
```

```
> t.test(x1, x2, var.equal = TRUE)
```

### Two Sample t-test

```
data: x1 and x2
t = 0.4066, df = 8, p-value = 0.695
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.111314 5.871314
sample estimates:
mean of x mean of y
11.06      10.18
```

```
> t.test(x1 - x2)
```

### One Sample t-test

```
data: x1 - x2
t = 3.3896, df = 4, p-value = 0.02754
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.1591929 1.6008071
sample estimates:
mean of x
0.88
```

## CI for (difference in) proportions

Proportions: use figure on page 274 (W&W) Large sample approximation:

$$P \pm 1.96 \sqrt{\frac{\pi(1 - \pi)}{n}}$$

by substituting  $P$  for  $\pi$  (for a conservative interval, i.e. worst case, substitute 0.5 for  $\pi$ ).

Difference in proportions, large sample approximation:

$$\Pr((P_1 - P_2) - 1.96\text{SE} \leq \pi_1 - \pi_2 \leq (P_1 - P_2) + 1.96\text{SE}) \approx .95$$

$$\text{with SE} = \sqrt{\frac{P_1(1 - P_1)}{n_1} + \frac{P_2(1 - P_2)}{n_2}}$$

## Ratio's of variances: F distribution

- ▶ Suppose we have two samples, and are interested whether they come from two populations having different variances, i.e.  $\sigma_1 \neq \sigma_2$ . Let sample 1 be the group with the larger variance. The F distribution describes the ratio of two sample variances under  $H_0 : \sigma_1 = \sigma_2$ .
- ▶ Under the hypothesis that  $\sigma_1 = \sigma_2$ , the ratio  $\frac{s_1^2}{s_2^2}$  follows the F distribution with  $n_1$  and  $n_2$  degrees of freedom.
- ▶ Suppose that  $s_1^2 = 9$ ,  $s_2^2 = 3$   $n_1 = 20$ ,  $n_2 = 30$ , so the sample variance ratio is  $9/3=3$ .

## Ratio's of variances: F distribution

- ▶ Suppose we have two samples, and are interested whether they come from two populations having different variances, i.e.  $\sigma_1 \neq \sigma_2$ . Let sample 1 be the group with the larger variance. The F distribution describes the ratio of two sample variances under  $H_0 : \sigma_1 = \sigma_2$ .
- ▶ Under the hypothesis that  $\sigma_1 = \sigma_2$ , the ratio  $\frac{s_1^2}{s_2^2}$  follows the F distribution with  $n_1$  and  $n_2$  degrees of freedom.
- ▶ Suppose that  $s_1^2 = 9$ ,  $s_2^2 = 3$   $n_1 = 20$ ,  $n_2 = 30$ , so the sample variance ratio is  $9/3=3$ .

## Ratio's of variances: F distribution

- ▶ Suppose we have two samples, and are interested whether they come from two populations having different variances, i.e.  $\sigma_1 \neq \sigma_2$ . Let sample 1 be the group with the larger variance. The F distribution describes the ratio of two sample variances under  $H_0 : \sigma_1 = \sigma_2$ .
- ▶ Under the hypothesis that  $\sigma_1 = \sigma_2$ , the ratio  $\frac{s_1^2}{s_2^2}$  follows the F distribution with  $n_1$  and  $n_2$  degrees of freedom.
- ▶ Suppose that  $s_1^2 = 9$ ,  $s_2^2 = 3$   $n_1 = 20$ ,  $n_2 = 30$ , so the sample variance ratio is  $9/3=3$ .

```
> qf(0.95, 20, 30)
[1] 1.931653

> v1 = var(Length[Gender == "male"])
> v2 = var(Length[Gender == "female"])
> v1

[1] NA

> v2

[1] NA

> v2/v1

[1] NA

> qf(0.95, length(Length[Gender == "female"]),
+      length(Length[Gender ==
+      "male"])))
[1] 1.347627
```

```
> t.test(Length ~ Gender, var.equal = TRUE)
```

### Two Sample t-test

```
data: Length by Gender
t = -13.3724, df = 245, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-15.25146 -11.33533
sample estimates:
mean in group female    mean in group male
                169.8495                183.1429
```

```
> t.test(Length ~ Gender)
```

### Welch Two Sample t-test

```
data: Length by Gender
t = -12.3266, df = 148.535, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-15.42444 -11.16235
sample estimates:
mean in group female    mean in group male
                169.8495                183.1429
```