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The normal assumption

I When computing confidence intervals based on the normal
distribution (σ known) or t-distribution (σ unknown) we
assume normality. But normality of what?

I NOT of the data, Xi , but

I of the estimation error of the mean, X̄ − µ
I When is this assumption justified?

1. when the data are (close to) normally distributed OR
2. when the sample size is large enough

I when is a sample large enough? (usually: n > 30)
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An example where it does not work out:

gamma distribution, shape = 0.05

rgamma(1000, 0.05)
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means of random samples with size 50: still far from normal

apply(replicate(1000, rgamma(50, 0.05)), 2, mean)
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Why does this normality thing work?

The central limit theorem:
Loosely, this theorem states that if we take a sum of n independent
random variables with an arbitrary distribution,

Y =
n∑

i=1

Xi

then, when n grows larger, then the distribution of Y will converge
to a normal distribution. As the mean is also a sum, this applies to
sample means. How fast is the convergence?
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CI for the difference in means; independent samples

Suppose we have two samples, and are interested in the difference
in their means. We can now for a confidence interval for µ1 − µ2
What is the standard eror for X̄1 − X̄2? Suppose σ1 = σ2, then

SE =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
[

1

n1
+

1

n2
]

and the 95% confidence interval is

Pr((X̄1 − X̄2)− tdf ,αSE ≤ µ1 − µ2 ≤ (X̄1 − X̄2) + tdf ,αSE) = .95

The usual interest lies in whether this interval contains zero.



CI for the difference in means; independent samples

> t.test(Length ~ Gender, var.equal = TRUE)

Two Sample t-test

data: Length by Gender

t = -13.3724, df = 245, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-15.25146 -11.33533

sample estimates:

mean in group female mean in group male

169.8495 183.1429



CI for the difference in means; paired samples

Paired samples: a single object has been measured twice (usually
at two moments, or ”before” and ”after” treatment)

obj t1 t2
1 13.5 12.7
2 15.3 15.1
3 7.5 6.6
4 10.3 8.5
5 8.7 8.0

> x1 = c(13.5, 15.3, 7.5, 10.3, 8.7)

> x2 = c(12.7, 15.1, 6.6, 8.5, 8)

> x1 - x2

[1] 0.8 0.2 0.9 1.8 0.7



> t.test(x1, x2, var.equal = TRUE)

Two Sample t-test

data: x1 and x2

t = 0.4066, df = 8, p-value = 0.695

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.111314 5.871314

sample estimates:

mean of x mean of y

11.06 10.18

> t.test(x1 - x2)

One Sample t-test

data: x1 - x2

t = 3.3896, df = 4, p-value = 0.02754

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.1591929 1.6008071

sample estimates:

mean of x

0.88



CI for (difference in) proportions

Proportions: use figure on page 274 (W&W) Large sample
approximation:

P ± 1.96

√
π(1− π)

n

by substituting P for π (for a conservative interval, i.e. worst case,
substitute 0.5 for π).
Difference in proportions, large sample approximation:

Pr((P1 − P2)− 1.96SE ≤ π1 − π2 ≤ (P1 − P2) + 1.96SE) ≈ .95

with SE =
√

P1(1−P1)
n1

+ P2(1−P2)
n2



Ratio’s of variances: F distribution

I Suppose we have two samples, and are interested whether
they come from two populations having different variances, i.e.
σ1 6= σ2. Let sample 1 be the group with the larger variance.
The F distribution describes the ratio of two sample variances
under H0 : σ1 = σ2.

I Under the hypothesis that σ1 = σ2, the ratio
s21
s22

follows the F

distribution with n1 and n2 degrees of freedom.

I Suppose that s21 = 9, s22 = 3 n1 = 20, n2 = 30, so the sample
variance ratio is 9/3=3.
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> qf(0.95, 20, 30)

[1] 1.931653

> v1 = var(Length[Gender == "male"])

> v2 = var(Length[Gender == "female"])

> v1

[1] NA

> v2

[1] NA

> v2/v1

[1] NA

> qf(0.95, length(Length[Gender == "female"]), length(Length[Gender ==

+ "male"]))

[1] 1.347627



> t.test(Length ~ Gender, var.equal = TRUE)

Two Sample t-test

data: Length by Gender

t = -13.3724, df = 245, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-15.25146 -11.33533

sample estimates:

mean in group female mean in group male

169.8495 183.1429

> t.test(Length ~ Gender)

Welch Two Sample t-test

data: Length by Gender

t = -12.3266, df = 148.535, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-15.42444 -11.16235

sample estimates:

mean in group female mean in group male

169.8495 183.1429
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