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Random variables

» A random variable is a numerical variable whose outcome is
subject to chance.

» We say (loosely) that the probability of taking on a certain
value is denoted by its probability density p(x) (or f(x)).

» Examples of discrete variables: throwing a dice, tossing a coin

» Examples of continuous variables: exact body length of a
randomly sampled person

» |f outcomes were completely predictable, there would be no
element of chance

» How can we describe probability distributions?

» Discrete random variables, continuous random variables
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Probability density and distribution function

Probability density f(x) gives, for discrete variables, the amount of
probability of being x, and is non-negative: f(x) = Pr(X = x)
Probability distribution ranges from 0 to 1, and gives the
cumulative probability up to x.

For discrete variables

F(xi) =) f(x)

x<Xx;

for continuous variables
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Expectation, Variance

Expectation is the mean value for a random variable. Discrete RV:
E(X) =p=>_xf(x)
i=1

Continuous RV:

note that E(X) is a numeric value, i.e. is non-random, and that
the argument of E(-) is random.
How does the expectation of X relate to the sample mean,
X =31 X7
T n =1 _
For random sampling a sample of size n from an infinite

population, each f(x;) is estimated by 1, and fi = . N\ ifoi



Variance, covariance

variance of a random variable is defined in terms of expectation
Var(X) = E(X — E(X))?
covariance is a measure of co-variation of two random variables
Cov(X, Y) = E((X — E(X))(Y - E(Y)))

with the following properties:

|Cov(X, Y)| < v/Var(X)Var(Y)

if X and Y are stochastically independent, then Cov(X, Y) =0
(the reverse does not hold)
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Covariance, correlation

I
Cov(X,Y)=E((X — E(X))(Y — E(Y)))

and

|Cov(X, Y)| < v/Var(X)Var(Y)

then the correlation coefficient between X and Y,

X, Y
r(x) Y) — COV( ’ )
v/ Var(X)Var(Y)
must have the property that
-1<r(X,Y)<1

it measures strength of linear relationship, and is 0 in absence of a
linear relation, 1 (-1) if the relationship is perfect, ascending
(descending). N itgi



Moments

The k-th moment of X is defined as
sk = E(X¥)
The k-th central moment of X is defined as
e = E((X — E(X))")

One can define a probability density function by all its moments.
The third central moment is of interest, as it tells whether a
distribution is symmetric (3 = 0), or skew. Is it right-skew, then
w3 > 0, is it left-skew then uz < 0.
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Bernoulli distribution

X:{ 1 red ball

0 blue ball
q = il — P for k=0
f(k)=4 p for k=1
0 otherwise

p is the probability of success (1), g the probability of failure.
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Binomial distribution

From n independent observations of a Bernouilli process having
success probability p, we obtain exactly k hits with probability

M pk(1 — p)(n—k) _
_ [ ()P —p)"0 fork=0,1,...,n
1 { 0 otherwise

example: random drawing n balls from a bowl, with replacement;
what is the probability of drawing exactly k red balls.

> pbinom(4, 9, 0.5)

[1] 0.5

> dbinom(4, 9, 0.5)

[1] 0.2460938

> rbinom(20, 9, 0.5)

[11 6 7455372264556243647 \ifgi
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Poisson distribution

Special case of the Binomial distribution, where n — oo, and the
rate np = X\ is known. The Poisson distribution describes the
expected frequencies of "hits": Pr(X = x|\) = f(x|\) = ’\Xj!_A
Examples:

» length of a row in a shop (queueing problem)
» discrete events in temporal processes, spatial processes

» usually the Poisson is the base-line case, against which more
structured processes are investigated
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Uniform distribution

the continuous uniform distribution has a uniform density between
its minimum value a and maximum value b:

[ 1/(b—a) for a<x<b
f(X)_{ 0 for x<aorx>b

> runif(n = 10, min = 25, max = 50)

[1] 35.71244 49.27612 41.59993 30.49697 32.38869 47.24659 47.25337
[8] 26.49742 39.28409 48.85743

> punif(9, min = 0, max = 10)

[1] 0.9
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Normal (Gaussian) distribution
> m = mean(Length)
> s = sqrt(var(Length))
> hist(Length, probability = TRUE, ylim = c(0, 0.035))
> curve(dnorm(x, m, s), add = TRUE, col = "red")
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Gaussian density function

No need to remember this:

1 —(x—p)?
e 202

f(x) =

o\ 2T

But remember:
» only depends on mean g and standard deviation o
» mean p is also median: symmetric
> ranges from —oo to oo
» approx. 68% lies between 1 — o and u+ o
> approx. 95% lies between y — 20 and p + 20
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Normal probability plot
> qqnorm(Length)
> qqline(Length)
Normal Q—-Q Plot
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Normal probability plot (2)

> qqnorm(Length)

> qqline(Length)

> gqline2 <- function(x) {
+ m = mean(x)
+
+
"
>

s sd(x)
lines(cbind(c(-3, 3), c(m - 3 * s, m + 3 * s)), col = "red")

+
qqline2(Length)

Normal Q-Q Plot
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