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The multiple linear regression model

The multiple linear regression model extends the simple regression
model with one single predictor

yi = β0 + β1Xi ,1 + ei

to two predictors

yi = β0 + β1Xi ,1 + β2Xi ,2 + ei

or p predictors:

yi = β0 + β1Xi ,1 + ...+ βpXi ,p + ei



Example: two groups
(Ignoring the outlier)

> plot(Weight ~ Gender)
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Example: ... seen through a linear regression glasses
> plot(Weight ~ I(as.numeric(Gender) - 1))

> abline(lm(Weight ~ Gender))
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Example: simple

> summary(lm(Weight ~ Gender))

Call:

lm(formula = Weight ~ Gender)

Residuals:

Min 1Q Median 3Q Max

-17.826 -5.826 -1.895 3.174 74.174

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.963 1.503 39.890 < 2e-16 ***

Gendermale 15.863 1.894 8.377 4.42e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.05 on 144 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.3276, Adjusted R-squared: 0.323

F-statistic: 70.17 on 1 and 144 DF, p-value: 4.420e-14



Interpretation

So, weight depends on Gender.
But, there’s also a length effect. Longer people are usually heavier,
and men are usually taller than women.
Questions we could ask:

1. is there, besides a Length effect still an effect of Gender on
Weight? (testing)

2. how large is the effect of Length on Weight? (estimation)

3. Does this effect depend on Gender? (testing)
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Example: simple

> summary(lm(Weight ~ Length))

Call:

lm(formula = Weight ~ Length)

Residuals:

Min 1Q Median 3Q Max

-13.081 -6.521 -2.174 3.952 76.609

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -80.39563 14.57031 -5.518 1.55e-07 ***

Length 0.84498 0.08175 10.337 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.21 on 144 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.4259, Adjusted R-squared: 0.422

F-statistic: 106.8 on 1 and 144 DF, p-value: < 2.2e-16



Example: simple
> plot(Weight ~ Length)

> abline(lm(Weight ~ Length))
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Example: simple
> plot(Weight ~ Length, col = Gender)

> abline(lm(Weight ~ Length))

●

●●

●●
●

●

●●
●
●

●

● ●●
●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●
●●
●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●●

●

● ●
●●

●

●
● ●

●

●●

●
●●

●
●

●
●

●
● ●

●●

●

●

●

● ● ●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

150 160 170 180 190

60
80

10
0

12
0

14
0

Length

W
ei

gh
t



Example: the two parallel lines

●

●●

●●
●

●

●●
●
●

●

● ●●
●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●
●●
●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●●

●

● ●
●●

●

●
● ●

●

●●

●
●●

●
●

●
●

●
● ●

●●

●

●

●

● ● ●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

150 160 170 180 190

60
80

10
0

12
0

14
0

Length

W
ei

gh
t



Example: the two parallel lines added
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Example: corresponding model

> summary(lm(Weight ~ Length + Gender))

Call:

lm(formula = Weight ~ Length + Gender)

Residuals:

Min 1Q Median 3Q Max

-13.940 -5.934 -1.010 2.970 75.374

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.4297 20.3431 -2.479 0.0143 *

Length 0.6575 0.1209 5.439 2.26e-07 ***

Gendermale 5.3972 2.5874 2.086 0.0388 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.09 on 143 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.4429, Adjusted R-squared: 0.4351

F-statistic: 56.84 on 2 and 143 DF, p-value: < 2.2e-16



3 Questions

1. is there, besides a Length effect still an effect of Gender on
Weight? No, it is not significant; it can be there, but based
on our data we cannot say whether it is positive or negative

2. how large is the effect of Length on Weight? Is it 0.88 or
0.71? Despite the fact that gender is not significant, assuming
H0 that the effect is zero is not very realistic. We may
therefor give a preference to the 0.71 estimate .

3. Does this effect depend on Gender? See next slide.
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Does the effect depend on Gender?
I Both models (simple linear, and multiple linear) give a single

dependence (slope of the line) for Weight on Length.
I The question whether this effect (the slope) depends on

Gender, is the following: does the slope (Weight ˜ Length)
differ for male persons from that of female persons?

Let Xi ,1 be Length, and let Xi ,2 be zero for female, and one for
male persons. Then

yi = β0 + β1Xi ,1 + β2Xi ,2 + β3Xi ,1Xi ,2 + ei

is a single regression model that reduces for female persons to

yi = β0 + β1Xi ,1 + ei

and for male persons to

yi = (β0 + β2) + (β1 + β3)Xi ,1 + ei

so, we have two completely free regression lines, each with a
unique slope and intercept.
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The R model
> summary(lm(Weight ~ Length * Gender))

Call:

lm(formula = Weight ~ Length * Gender)

Residuals:

Min 1Q Median 3Q Max

-13.944 -5.928 -1.002 3.063 75.415

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -45.80442 30.57002 -1.498 0.136264

Length 0.62991 0.18188 3.463 0.000705 ***

Gendermale -3.28331 42.78824 -0.077 0.938943

Length:Gendermale 0.04961 0.24407 0.203 0.839234

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.12 on 142 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.4431, Adjusted R-squared: 0.4313

F-statistic: 37.65 on 3 and 142 DF, p-value: < 2.2e-16



Multiple linear regression with two variables.
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> summary(lm(z ~ x))

Call:

lm(formula = z ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.9759 -0.7131 0.2829 0.7043 1.5639

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.03122 0.38227 5.314 1.18e-05 ***

x 0.49912 0.06161 8.101 8.05e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9692 on 28 degrees of freedom

Multiple R-squared: 0.701, Adjusted R-squared: 0.6903

F-statistic: 65.63 on 1 and 28 DF, p-value: 8.05e-09



> summary(lm(z ~ x + y))

Call:

lm(formula = z ~ x + y)

Residuals:

Min 1Q Median 3Q Max

-1.05017 -0.31838 -0.09206 0.29609 1.63476

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.17983 0.34740 0.518 0.609

x 0.49912 0.03703 13.477 1.67e-13 ***

y 0.92570 0.13028 7.106 1.22e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5826 on 27 degrees of freedom

Multiple R-squared: 0.8958, Adjusted R-squared: 0.8881

F-statistic: 116.1 on 2 and 27 DF, p-value: 5.507e-14



Why using multiple regression?

1. There is a difference in interpretation for slopes

I when (some of) the predictors X are correlated, the slopes
differ from eachother.

I the slope for the model y = β0 + β1X1 + e is simply the
expected change in y as a function of X1, ignoring everything
else

I the slope for the model y = β0 + β1X1 + β2X2 + e is simply
the expected change in y as a function of X1, everything else
(meaning: X2) held constant.

I in the first model, the slope may be partly due to X2.

2. Their power is often larger (smaller residual standard error).
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Correlated errors

When observations are correlated, and cannot be considered
independent (e.g. by the random sampling argument), regression
can be applied under a more general model that addresses these
correlations.

I the structure of the correlation needs to be assessed
I correlation in space: a function of spatial distance?
I correlation over time: a function of time separation?
I within-item correlation: e.g. longitudinal studies.

I the magnitude of the correlations needs to be assessed
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Generalized linear models

Generalized linear models extend the (multiple) linear regression
models by

I not assuming a (free) continuous variable as dependent

I not assuming a Gaussian distribution for the residuals

Examples:

I logistic regression: dependent variable is 0/1
(absence/presence)

I log-linear models: dependent variable is a count (Poisson)

I regression on log-transforms: the logarithm of y is taken
instead of y

These models are very common in ecology.
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R-squared and adjusted R-squared

Coefficient of multiple correlation:

R2 =

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

Adjusted R2:

R̄2 =
(n − 1)R2 − k

n − k − 1

with n the number of observations, and k the number of
parameters fitted.



Regression prediction, prediction SE

We can make regression predictions, for specific conditions of the
X variables, e.g. for simple linear regression at x0:

ŷ0 = β̂0 + β̂1x0

This prediction has an error, the prediction standard error that we
can retrieve from the analysis; for the mean value it is:

SEȳ0 = σ̂

√
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

for a single observation it is:

SEŷ0 = σ̂

√
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2
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