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Correlation and regression

t-tests and analysis of variance look at how a single continuous
variable depends on a single categorical variable with two levels
(t-test), more levels (one-way anova), or on more than one
categorical variable (two-way, more-way anova).

The focus now shifts to the relation between two (or more)
continuous variables. We start with the relationship between two
continuous variables, and how one continuous variable depends on
another dependent variable.
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sample and population correlation

We can compute sample correlation,

> cor(Length, Weight, use = "complete.obs")

[1] 0.6818044

but also test whether the population correlation (p) has a certain

value. Typically, Hy : p = 0.
> cor.test(Length, Weight)

Pearson's product-moment correlation

data: Length and Weight
t = 11.223, df = 145, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to O

95 percent confidence interval:
0.5844191 0.7598282
sample estimates:
cor
0.6818044
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correlation: symmetry

As can be glanced from the equation how to compute correlation,

Cov(X,Y)
v/ Var(X)Var(Y)

it is true that r(x,y) = r(y, x). Indeed,
> cor(Length, Weight, use = "complete.obs")

r(X,Y) =

[1] 0.6818044
> cor(Weight, Length, use = "complete.obs")

[1] 0.6818044
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Linear regression

Regression looks at asymmetric problems, where one variable
depends on another. E.g. in simple linear regression, for n
observations y;, i =1,...,n:

yi = Bo + Pixi + €

with e a zero-mean random variable, 8y and (1 unknown but
non-random population parameters, and X known. So,

E(yi) = Bo + Pixi

As e is random, it means that y is random as well, whereas x is
not.
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A test the regression slope

The typical problem in looking at linear relationships between two
continuous variables, is to ask oneself whether one variable
depends on the other. Dependence is a rather broad concept, and
can have many forms. We usually first look at whether one
variable linearly depends on the other, as in

yi = Bo+ Pixi + €

If this dependence is not the case, then 5; = 0. So, this is the
typical Hp for this kind of test.
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How to estimate the parameters?

Under the assumptions that

(i) the observations are independent (and consequently the ¢; are
independent) and

the best estimates for By and ;1 are obtained by minimizing the
sum of squared regression residuals, > .7 ; e,-2: and are

5 = Sl =) ~7)
> (xi = x)?

~

Bo =7y — Bix
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How to estimate the parameters?

Under the assumptions that
(i) the observations are independent (and consequently the ¢; are
independent) and
(i) that the variance of e; is constant,

the best estimates for Sy and ;1 are obtained by minimizing the
sum of squared regression residuals, > .7 ; e,-2: and are

5 - Sl =) ~7)
> (xi = x)?

~

Bo=7 — bix
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Regression output from R — 1

> 1m(Weight ~ Length)

Call:
Im(formula = Weight ~ Length)

Coefficients:
(Intercept) Length
-120.311 1.073

The intercept refers to the value of y when x is zero, the value
called Length to the regression coefficient that belongs to variable
Length. Thus, the equation for the regression line is:

E(Weight) = —120.311 + 1.073 X Length

Under the additional assumptions of normaly distributed residuals:

5 ifgi

4



Regression output from R — 2

> summary (lm(Weight ~ Length))

Call:
Im(formula = Weight ~ Length)

Residuals:
Min 1Q Median 3Q Max
-18.054 -6.950 -2.297 3.369 84.350

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -120.31118  17.06402 -7.051 6.72e-11 **x*
Length 1.07255 0.09557 11.223 < 2e-16 **x

Signif. codes: 0O “*%x’ 0.001 ‘*%’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 12.59 on 145 degrees of freedom

(2 observations deleted due to missingness)
Multiple R-squared: 0.4649, Adjusted R-squared: O. 4612'~ )
F-statistic: 126 on 1 and 145 DF, p-value: < 2.2e-16 ifgi



A model for the data

For each data point y;, we can decompose the difference from the
mean of y, y as

Yi—=y=i—=9+0 -y
As the two right-hand side terms are independent, we can write
this as

2 ~ —

i—7)P2=0i—9)2+ G —7)?

and summed over all measurements:

Sstot = SSresid + SSreg

> summary (aov(Weight ~ Length))

Df Sum Sq Mean Sq F value Pr(>F)
Length 1 19956 19956.0 125.96 < 2.2e-16 **x
Residuals 145 22973 158.4

Signif. codes: 0 ‘%’ 0.001 ‘%%’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ } ifgi
2 observations deleted due to missingness



» Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)
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» Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)

» on 145 degrees of freedom: n — 2 (two coefficients were
estimated: [y and (31, to obtain residuals)
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» Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)

» on 145 degrees of freedom: n — 2 (two coefficients were
estimated: [y and (31, to obtain residuals)

» Multiple R-squared: 0.4649 this is $5,5/SS¢0t, a
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit
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Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)

on 145 degrees of freedom: n — 2 (two coefficients were

estimated: [y and (31, to obtain residuals)

Multiple R-squared: 0.4649 this is 5Seg/SSto0t, a
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit

Adjusted R-squared: 0.4512 (next week)
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Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)

on 145 degrees of freedom: n — 2 (two coefficients were

estimated: [y and (31, to obtain residuals)

Multiple R-squared: 0.4649 this is 5Seg/SSto0t, a
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit

Adjusted R-squared: 0.4512 (next week)

F-statistic: 126 on 1 and 145 DF the ratio of the
mean squares (MSeg/ MSyesid)
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Residual standard error: 12.59: this is the square-root
of MS Residuals (158.4)

on 145 degrees of freedom: n — 2 (two coefficients were

estimated: [y and (31, to obtain residuals)

Multiple R-squared: 0.4649 this is 5Seg/SSto0t, a
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit

Adjusted R-squared: 0.4512 (next week)
F-statistic: 126 on 1 and 145 DF the ratio of the
mean squares (MSeg/ MSyesid)

p-value: < 2.2e-16 the p-value of the test for the slope,
on Ho : ﬁl =0
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Diagnostic plots, 1

> plot(lm(Weight ~ Length), which = 1)
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Diagnostic plots, 2

> plot(lm(Weight ~ Length), which = 2)
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Diagnostic plots, 3

> plot(lm(Weight ~ Length), which = 3)
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