

Introduction to Geostatistics

10. Correlation and regression

Edzer Pebesma

edzer.pebesma@uni-muenster.de
Institute for Geoinformatics (**ifgi**)
University of Münster

June 22, 2010

Correlation and regression

t-tests and analysis of variance look at how a single *continuous* variable depends on a single *categorical* variable with two levels (t-test), more levels (one-way anova), or on more than one categorical variable (two-way, more-way anova).

The focus now shifts to the relation between two (or more) **continuous** variables. We start with the relationship between two continuous variables, and how one continuous variable depends on another dependent variable.

sample and population correlation

We can compute sample correlation,

```
> cor(Length, Weight, use = "complete.obs")  
[1] 0.6818044
```

but also test whether the population correlation (ρ) has a certain value. Typically, $H_0 : \rho = 0$.

```
> cor.test(Length, Weight)  
Pearson's product-moment correlation
```

```
data: Length and Weight  
t = 11.223, df = 145, p-value < 2.2e-16  
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval:  
 0.5844191 0.7598282  
sample estimates:  
      cor  
0.6818044
```

correlation: symmetry

As can be glanced from the equation how to compute correlation,

$$r(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

it is true that $r(x, y) = r(y, x)$. Indeed,

```
> cor(Length, Weight, use = "complete.obs")
```

```
[1] 0.6818044
```

```
> cor(Weight, Length, use = "complete.obs")
```

```
[1] 0.6818044
```

Linear regression

Regression looks at asymmetric problems, where one variable depends on another. E.g. in simple linear regression, for n observations y_i , $i = 1, \dots, n$:

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

with e a zero-mean random variable, β_0 and β_1 unknown but non-random population parameters, and X known. So,

$$E(y_i) = \beta_0 + \beta_1 x_i$$

As e is random, it means that y is random as well, whereas x is not.

A test the regression slope

The typical problem in looking at linear relationships between two continuous variables, is to ask oneself *whether* one variable *depends* on the other. Dependence is a rather broad concept, and can have many forms. We usually first look at whether one variable **linearly** depends on the other, as in

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

If this dependence is not the case, then $\beta_1 = 0$. So, this is the typical H_0 for this kind of test.

How to estimate the parameters?

Under the assumptions that

- (i) the observations are independent (and consequently the e_i are independent) and
- (ii) that the variance of e_i is constant,

the best estimates for β_0 and β_1 are obtained by minimizing the sum of squared regression residuals, $\sum_{i=1}^n e_i^2$: and are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

How to estimate the parameters?

Under the assumptions that

- (i) the observations are independent (and consequently the e_i are independent) and
- (ii) that the variance of e_i is constant,

the best estimates for β_0 and β_1 are obtained by minimizing the sum of squared regression residuals, $\sum_{i=1}^n e_i^2$: and are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Regression output from R – 1

```
> lm(Weight ~ Length)
```

Call:

```
lm(formula = Weight ~ Length)
```

Coefficients:

(Intercept)	Length
-120.311	1.073

The intercept refers to the value of y when x is zero, the value called Length to the regression coefficient that belongs to variable Length. Thus, the equation for the regression line is:

$$E(\text{Weight}) = -120.311 + 1.073 \times \text{Length}$$

Under the *additional* assumptions of normally distributed residuals:

Regression output from R – 2

```
> summary(lm(Weight ~ Length))
```

Call:

```
lm(formula = Weight ~ Length)
```

Residuals:

Min	1Q	Median	3Q	Max
-18.054	-6.950	-2.297	3.369	84.350

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-120.31118	17.06402	-7.051	6.72e-11 ***
Length	1.07255	0.09557	11.223	< 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.59 on 145 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.4649, Adjusted R-squared: 0.4612
F-statistic: 126 on 1 and 145 DF, p-value: < 2.2e-16

A model for the data

For each data point y_i , we can decompose the difference from the mean of y , \bar{y} as

$$y_i - \bar{y} = (y_i - \hat{y}) + (\hat{y} - \bar{y})$$

As the two right-hand side terms are independent, we can write this as

$$(y_i - \bar{y})^2 = (y_i - \hat{y})^2 + (\hat{y} - \bar{y})^2$$

and summed over all measurements:

$$SS_{tot} = SS_{resid} + SS_{reg}$$

```
> summary(aov(Weight ~ Length))
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	1	19956	19956.0	125.96	< 2.2e-16 ***
Residuals	145	22973	158.4		
<hr/>					

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
2 observations deleted due to missingness
```

- ▶ **Residual standard error:** 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ **Multiple R-squared:** 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ **Adjusted R-squared:** 0.4512 (next week)
- ▶ **F-statistic:** 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ **p-value:** $< 2.2e-16$ the p-value of the test for the slope, on $H_0: \beta_1 = 0$

- ▶ Residual standard error: 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ Multiple R-squared: 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4512 (next week)
- ▶ F-statistic: 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ p-value: $< 2.2e-16$ the p-value of the test for the slope, on $H_0: \beta_1 = 0$

- ▶ Residual standard error: 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ Multiple R-squared: 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4512 (next week)
- ▶ F-statistic: 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ p-value: $< 2.2e-16$ the p-value of the test for the slope, on $H_0: \beta_1 = 0$

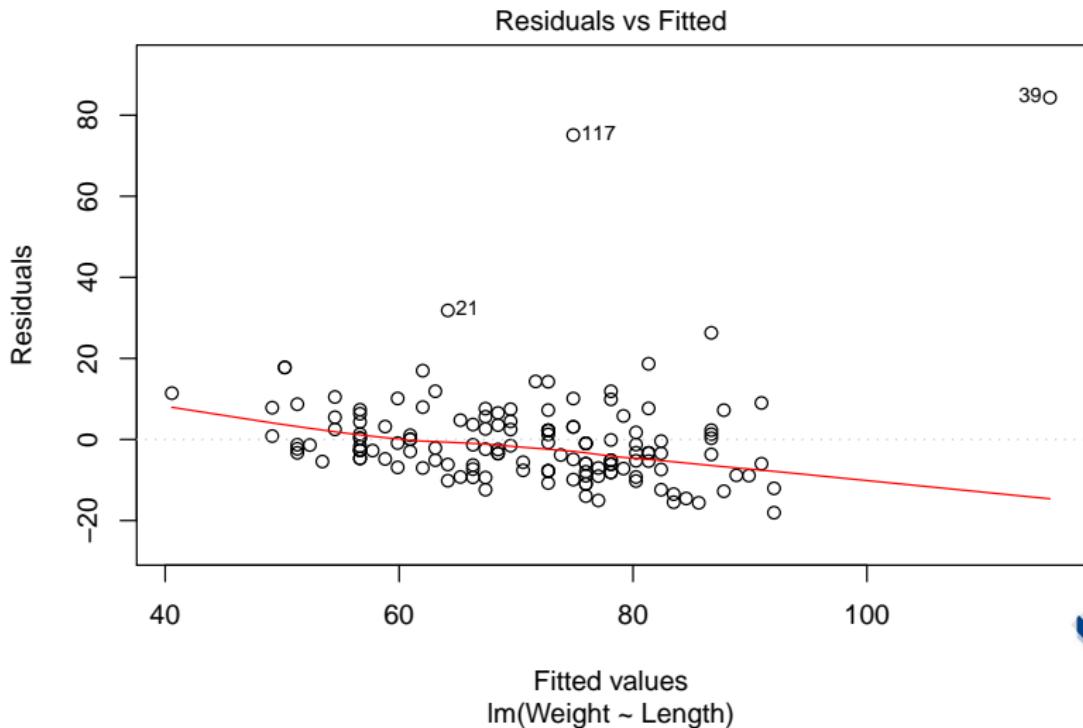
- ▶ Residual standard error: 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ Multiple R-squared: 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4512 (next week)
- ▶ F-statistic: 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ p-value: $< 2.2e-16$ the p-value of the test for the slope, on $H_0: \beta_1 = 0$

- ▶ Residual standard error: 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ Multiple R-squared: 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4512 (next week)
- ▶ F-statistic: 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ p-value: $< 2.2e-16$ the p-value of the test for the slope, on $H_0: \beta_1 = 0$

- ▶ Residual standard error: 12.59: this is the square-root of MS Residuals (158.4)
- ▶ on 145 degrees of freedom: $n - 2$ (two coefficients were estimated: β_0 and β_1 , to obtain residuals)
- ▶ Multiple R-squared: 0.4649 this is SS_{reg}/SS_{tot} , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4512 (next week)
- ▶ F-statistic: 126 on 1 and 145 DF the ratio of the mean squares (MS_{reg}/MS_{resid})
- ▶ p-value: $< 2.2e-16$ the p-value of the test for the slope, on $H_0 : \beta_1 = 0$

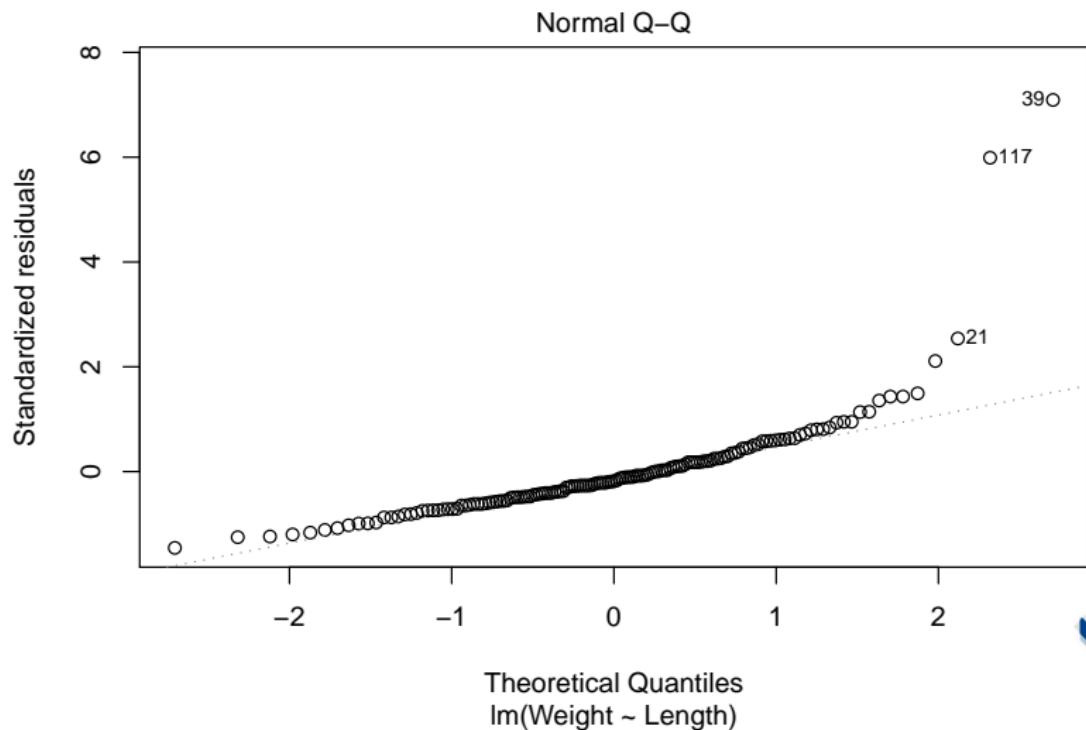
Diagnostic plots, 1

```
> plot(lm(Weight ~ Length), which = 1)
```



Diagnostic plots, 2

```
> plot(lm(Weight ~ Length), which = 2)
```



Diagnostic plots, 3

```
> plot(lm(Weight ~ Length), which = 3)
```

