

Introduction to Geostatistics

8. Formal testing. One-sample tests; two-sample tests; difference in means; difference in proportions. p-values, significance, Type-I errors. One-sided and two-sided tests.

Edzer J. Pebesma

edzer.pebesma@uni-muenster.de
Institute for Geoinformatics (**ifgi**)
University of Münster

summer semester 2007/8,
June 9, 2009

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Field work

One-day measurement campaign, in couples of two, to address

- ▶ device a research question
- ▶ planning of a sampling scheme
- ▶ doing the sampling
- ▶ entering samples in the computer
- ▶ statistical analysis (graphs, confidence intervals, tests)
- ▶ (brief) reporting

Hypothesis testing

Suppose we have the two-sample example, and ask if in the population group A has a mean that differs significantly from that of group B . The approach we've seen last week is to form a confidence interval for the difference $\mu_A - \mu_B$, and check if this overlaps zero. If not, then the means differ **significantly**.

Given two random samples, \bar{X}_A and \bar{X}_B will always differ, but the difference can be due to

- ▶ if $\mu_A = \mu_B$: chance (random sampling),
- ▶ if $\mu_A \neq \mu_B$: difference in population means + chance

Hypothesis testing

Suppose we have the two-sample example, and ask if in the population group A has a mean that differs significantly from that of group B . The approach we've seen last week is to form a confidence interval for the difference $\mu_A - \mu_B$, and check if this overlaps zero. If not, then the means differ **significantly**.

Given two random samples, \bar{X}_A and \bar{X}_B will always differ, but the difference can be due to

- ▶ if $\mu_A = \mu_B$: chance (random sampling),
- ▶ if $\mu_A \neq \mu_B$: difference in population means + chance

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

A formal testing procedure

1. Hypotheses: formulate H_0 and H_A
2. Sample size
3. Significance level
4. Sampling distribution of test statistics (Prüfgröße)
5. Critical region
6. Test statistic
7. Conclusion

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025, 85} = -1.99$, to $t_{0.975, 85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

1. $H_0 : \mu = 175$, $H_A : \mu \neq 175$
2. $n = 86$
3. $\alpha = 0.05$
4. Sampling distribution of test statistics: t -distribution with $n - 1 = 85$ degrees of freedom
5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside $[-1.99, 1.99]$ leads to rejecting H_0
6. $t = (\bar{X} - \mu) / \text{SE} = 2.61198$
7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is **significantly** different from the hypothesized value.

Significant: meaningful, not a result from chance

Testing by using confidence intervals

As seen in the previous lecture, the 95% confidence interval for the sample mean is

$$[175.7803, 180.7546]$$

If H_0 does not lie in the central 95% confidence interval, we can reject it.

Note the following

- ▶ confidence intervals are on the scale of \bar{X} and μ , test values always on the scale of t , z , etc
- ▶ confidence intervals immediately show all the H_0 that would be rejected, and those that would not
- ▶ steps 5 and 6 are different: whereas the CI approach uses the critical t and SE to find the boundaries to compare H_0 against, formal tests compare the t test statistic against a critical t value.

Testing by using confidence intervals

As seen in the previous lecture, the 95% confidence interval for the sample mean is

$$[175.7803, 180.7546]$$

If H_0 does not lie in the central 95% confidence interval, we can reject it.

Note the following

- ▶ confidence intervals are on the scale of \bar{X} and μ , test values always on the scale of t , z , etc
- ▶ confidence intervals immediately show all the H_0 that would be rejected, and those that would not
- ▶ steps 5 and 6 are different: whereas the CI approach uses the critical t and SE to find the boundaries to compare H_0 against, formal tests compare the t test statistic against a critical t value.

Testing by using confidence intervals

As seen in the previous lecture, the 95% confidence interval for the sample mean is

$$[175.7803, 180.7546]$$

If H_0 does not lie in the central 95% confidence interval, we can reject it.

Note the following

- ▶ confidence intervals are on the scale of \bar{X} and μ , test values always on the scale of t , z , etc
- ▶ confidence intervals immediately show all the H_0 that would be rejected, and those that would not
- ▶ steps 5 and 6 are different: whereas the CI approach uses the critical t and SE to find the boundaries to compare H_0 against, formal tests compare the t test statistic against a critical t value.

By computer:

```
> load("students.RData")
> attach(students)
> t.test(Length, mu = 175)
```

One Sample t-test

```
data: Length
t = 3.3814, df = 148, p-value = 0.0009227
alternative hypothesis: true mean is not equal to 175
95 percent confidence interval:
176.2607 179.8064
sample estimates:
mean of x
178.0336
```

Where is α ?

Statistics programs (such as R) do not ask for an α , but rather give a p -value. This is the probability of wrongly rejecting H_0 . If p -value $< \alpha$, you reject H_0 , else you do not reject H_0 .

About not rejecting H_0

Not rejecting H_0 does **never** mean that H_0 is true, but merely that it is not in conflict with the data. As the confidence interval shows, there is a large collection of H_0 hypotheses **possible**, i.e. in agreement with the data, so claiming there is one that is true is quite opportunistic. Furthermore, a so-called *point-hypothesis* such as $H_0: \mu = 175$ is quite unlikely to ever be true, as it means $\mu = 175.000000000...$

About not rejecting H_0

Not rejecting H_0 does **never** mean that H_0 is true, but merely that it is not in conflict with the data. As the confidence interval shows, there is a large collection of H_0 hypotheses **possible**, i.e. in agreement with the data, so claiming there is one that is true is quite opportunistic. Furthermore, a so-called *point-hypothesis* such as $H_0: \mu = 175$ is quite unlikely to ever be true, as it means $\mu = 175.000000000...$

About not rejecting H_0

Not rejecting H_0 does **never** mean that H_0 is true, but merely that it is not in conflict with the data. As the confidence interval shows, there is a large collection of H_0 hypotheses **possible**, i.e. in agreement with the data, so claiming there is one that is true is quite opportunistic. Furthermore, a so-called *point-hypothesis* such as $H_0: \mu = 175$ is quite unlikely to ever be true, as it means $\mu = 175.000000000...$

Two-sample tests

E.g. difference in means:

- ▶ Step 1: $H_0 : \mu_1 = \mu_2$, and
- ▶ Step 4: $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ follows a t distribution
- ▶ SE: see confidence intervals
- ▶ ... with the assumption that $\sigma_1^2 = \sigma_2^2$

Two-sample tests

E.g. difference in means:

- ▶ Step 1: $H_0 : \mu_1 = \mu_2$, and
- ▶ Step 4: $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ follows a t distribution
- ▶ SE: see confidence intervals
- ▶ ... with the assumption that $\sigma_1^2 = \sigma_2^2$

Two-sample tests

E.g. difference in means:

- ▶ Step 1: $H_0 : \mu_1 = \mu_2$, and
- ▶ Step 4: $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ follows a t distribution
- ▶ SE: see confidence intervals
- ▶ ... with the assumption that $\sigma_1^2 = \sigma_2^2$

Two-sample tests

E.g. difference in means:

- ▶ Step 1: $H_0 : \mu_1 = \mu_2$, and
- ▶ Step 4: $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ follows a t distribution
- ▶ SE: see confidence intervals
- ▶ ... with the assumption that $\sigma_1^2 = \sigma_2^2$

Type I and Type II errors

Of course we take a risk to wrongly rejecting a true H_0 , of α .

There's however also a risk that we wrongly *not* reject a false H_0 , which is called β .

Test result	Truth	
	H_0 true	H_0 false
Reject H_0	Type I error, α	OK, $(1-\beta)$
Do not reject H_0	OK $(1-\alpha)$	Type II error, β

β can be controlled by n , and is smaller for larger n . You can compute β under a given H_A (WW: 302-307; next week more on this)

One-sided vs. two-sided tests

Usually the H_A is a simple denial of H_0 , as in

$$H_0: \mu_1 = \mu_2$$

$$H_A: \mu_1 \neq \mu_2 \text{ (implying } \mu_1 < \mu_2 \text{ or } \mu_1 > \mu_2\text{)}$$

We might however be interested in only one type of alternative, e.g.

$$H_A: \mu_1 < \mu_2$$

In that latter case, as $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ we can take the critical region as only the negative t values, and ignore the positive ones. The critical region then is then anything below $t_{0.05, n_1 + n_2 - 2}$

Compare this with one-sided confidence intervals.

```
> t.test(Length, mu = 175, alternative = "less")
```

One Sample t-test

data: Length

t = 3.3814, df = 148, p-value = 0.9995

alternative hypothesis: true mean is less than 175

95 percent confidence interval:

-Inf 179.5185

sample estimates:

mean of x

178.0336

```
> t.test(Length, mu = 175, alternative = "greater")
```

One Sample t-test

data: Length

t = 3.3814, df = 148, p-value = 0.0004614

alternative hypothesis: true mean is greater than 175

95 percent confidence interval:

176.5486 Inf

sample estimates:

mean of x

178.0336