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Random variables

I A random variable is a numerical variable whose outcome is
subject to chance.

I We say (loosely) that the probability of taking on a certain
value is denoted by its probability density p(x) (or f (x)).

I Examples of discrete variables: throwing a dice, throwing a
coin

I Examples of continuous variables: exact body length of a
randomly sampled person

I If outcomes were completely predictable, there would be no
element of chance

I How can we describe probability distributions?

I Discrete random variables, continuous random variables



Probability density and distribution function

Probability density f (x) gives, for discrete variables, the amount of
probability of being x , and is non-negative: f (x) = Pr(X = x)
Probability distribution ranges from 0 to 1, and gives the
cumulative probability up to x .
For discrete variables

F (xi ) =
∑
x≤xi

f (x)

for continuous variables

F (xi ) =

∫ xi

−∞
f (x)dx

Expectation, Variance

Expectation is the mean value for a random variable. Discrete RV:

E(X ) = µ =
n∑

i=1

xi f (xi )

Continuous RV:

E(X ) = µ =

∫ +∞

−∞
xf (x)dx

note that E(X ) is a numeric value, i.e. is non-random, and that
the argument of E(·) is random.
How does the expectation of X relate to the sample mean,
x̄ = 1

n

∑n
i=1 xi?

For random sampling a sample of size n from an infinite
population, each f (xi ) is estimated by 1

n , and µ̂ = x̄ .



Variance, covariance

variance of a random variable is defined in terms of expectation

Var(X ) = E(X − E(X ))2

covariance is a measure of co-variation of two random variables

Cov(X ,Y ) = E((X − E(X ))(Y − E(Y )))

with the following properties:

|Cov(X ,Y )| ≤
√

Var(X )Var(Y )

if X and Y are stochastically independent, then Cov(X ,Y ) = 0
(the reverse does not hold)

Covariance, correlation

If
Cov(X ,Y ) = E((X − E(X ))(Y − E(Y )))

and
|Cov(X ,Y )| ≤

√
Var(X )Var(Y )

then the correlation coefficient between X and Y ,

r(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )

must have the property that

−1 ≤ r(X ,Y ) ≤ 1

it measures strength of linear relationship, and is 0 in absence of a
linear relation, 1 (-1) if the relationship is perfect, ascending
(descending).



Moments

The k-th moment of X is defined as

µ′k = E(X k)

The k-th central moment of X is defined as

µk = E((X − E(X ))k)

One can define a probability density function by all its moments.
The third central moment is of interest, as it tells whether a
distribution is symmetric (µ3 = 0), or skew. Is it right-skew, then
µ3 > 0, is it left-skew then µ3 < 0.

Bernoulli distribution

X =

{
1 red ball
0 blue ball

f (k) =


q = 1− p for k = 0
p for k = 1
0 otherwise

p is the probability of success (1), q the probability of failure.



Binomial distribution

From n independent observations of a Bernouilli process having
success probability p, we obtain exactly k hits with probability

f (k) =

{ (n
k

)
pk(1− p)(n−k) fork = 0, 1, ..., n

0 otherwise

example: random drawing n balls from a bowl, with replacement;
what is the probability of drawing exactly k red balls.

> pbinom(4, 9, 0.5)

[1] 0.5

> dbinom(4, 9, 0.5)

[1] 0.2460938

> rbinom(20, 9, 0.5)

[1] 6 7 4 5 5 3 7 2 2 6 4 5 5 6 2 4 3 6 4 7

Poisson distribution

Special case of the Binomial distribution, where n→∞, and the
rate np = λ is known. The Poisson distribution describes the
expected frequencies of ”hits”: Pr(X = x |λ) = f (x |λ) = λxe−λ

x!
Examples:

I length of a row in a shop (queueing problem)

I discrete events in temporal processes, spatial processes

I usually the Poisson is the base-line case, against which more
structured processes are investigated



Uniform distribution

the uniform distribution has a uniform density between its
minimum value a and maximum value b:

f (x) =

{
1/(b − a) for a < x < b

0 for x < a or x > b

> runif(n = 10, min = 25, max = 50)

[1] 35.71244 49.27612 41.59993 30.49697 32.38869 47.24659 47.25337

[8] 26.49742 39.28409 48.85743

> punif(9, min = 0, max = 10)

[1] 0.9

Normal (Gaussian) distribution

> m = mean(Length)

> s = sqrt(var(Length))

> r = 150:220

> hist(Length, probability = TRUE, ylim = c(0, 0.035))

> curve(dnorm(x, m, s), add = TRUE, col = "red")
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Gaussian density function

Do not remember this:

f (x) =
1

σ
√

2π
e
−(x−µ)2

2σ2

But remember:

I only depends on µ and σ

I mean µ is also median: symmetric

I ranges from −∞ to ∞
I approx. 68% lies between µ− σ and µ+ σ

I approx. 95% lies between µ− 2σ and µ+ 2σ

Normal probability plot

> qqnorm(Length)

> qqline(Length)
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Normal probability plot (2)

> qqnorm(Length)

> qqline(Length)

> x = c(-3, 3)

> y = c(m - 3 * s, m + 3 * s)

> lines(cbind(x, y), col = "red")
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