

Introduction to Geostatistics

12. Looking forward: multivariate and geostatistics

Edzer J. Pebesma

edzer.pebesma@uni-muenster.de
Institute for Geoinformatics (ifgi)
University of Münster

summer semester 2007/8,
July 7, 2008

Regression prediction, prediction SE

We can make regression predictions, for specific conditions of the X variables, e.g. for simple linear regression at x_0 :

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

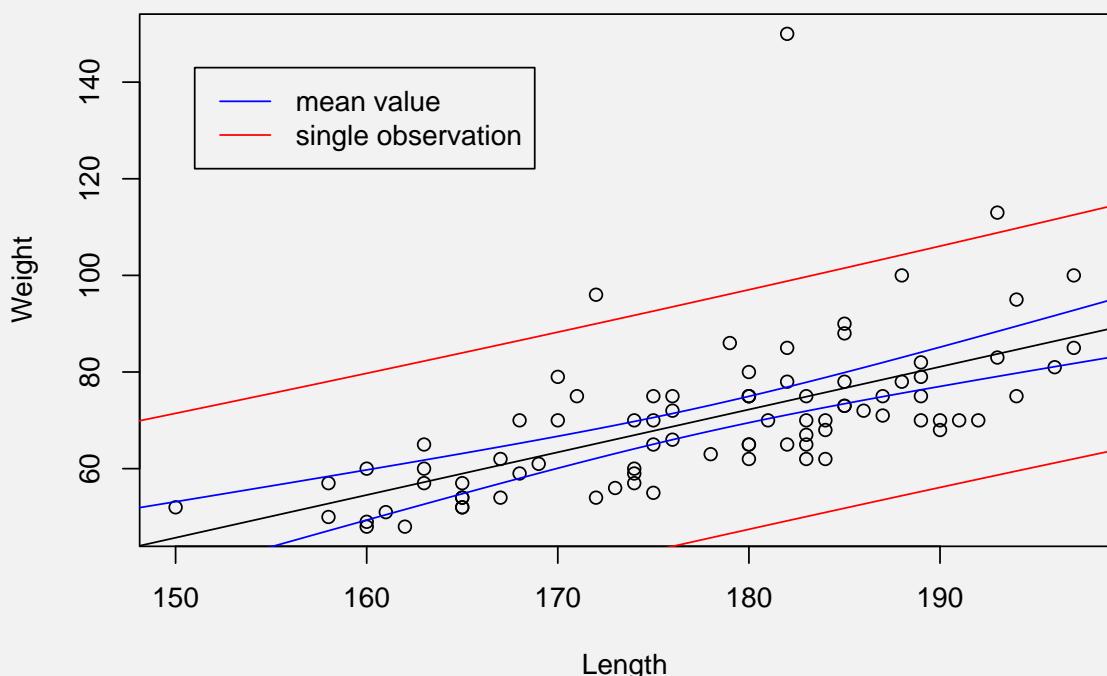
This prediction has an error, the prediction standard error that we can retrieve from the analysis; for the mean value it is:

$$SE_{\bar{y}_0} = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

for a single observation it is:

$$SE_{\hat{y}_0} = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

two types of 95% prediction intervals



Looking forward

We could take this course forward in many ways, notably

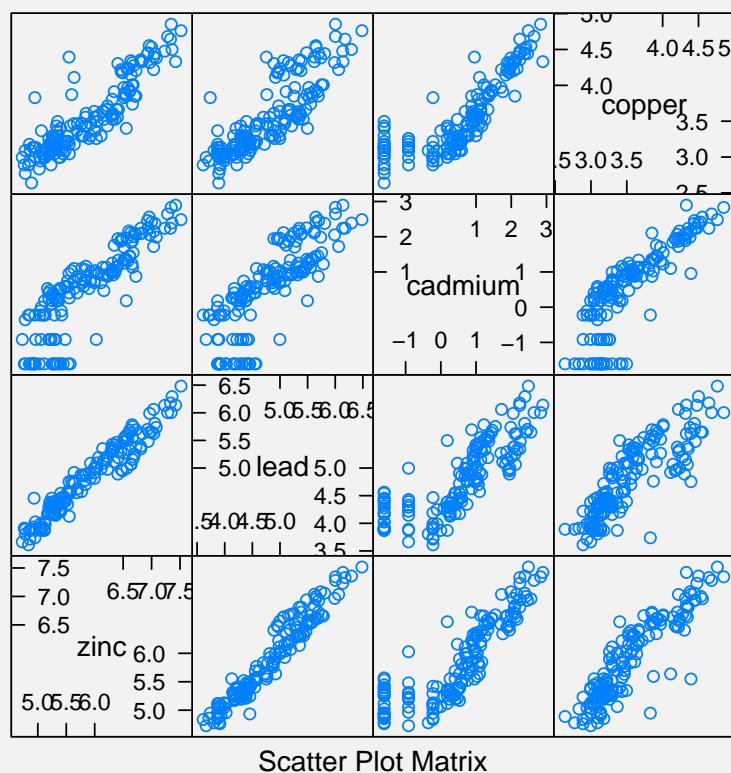
- ▶ considering more regression extensions,
- ▶ looking at multivariate data
- ▶ looking at spatial data, temporal data, and spatio-temporal data.

This will be done to some extent, probably in the analysis of

- ▶ species composition (ordination)
- ▶ remote sensing data (multivariate data)
- ▶ analysis of e.g. chemical data, or sediment data
- ▶ analysis of spatio-temporal data

Multivariate data

- ▶ Looking at the world as either univariate or multivariate, everything we did starting from correlation and regression, maybe even the two-sample t-test, is multivariate
- ▶ In a more strict sense, or traditionally, multivariate data analysis looks at multiple *dependent* variables (i.e., *not* regression)
- ▶ Typical problems include
 1. exploration: what are the structures or patterns in the data?
 2. induction: can we test, and infer something about the population?
 3. prediction: can we predict (and map) the variable(s) under question?



Scatter Plot Matrix

Exploration: Directions

Exploratory methods usually looks at either ordination or clustering (finding groups).

Ordination is concerned with finding main directions of variability, ignoring minor directions:

- ▶ Can we summarize or **reduce** the data set to a small (1-3) number of independent variables, with a minimum loss of information?

Principal component analysis

```
> prcomp(log(meuse[c("zinc", "lead", "cadmium", "copper")]))
```

Standard deviations:

```
[1] 1.5746879 0.4307029 0.2181036 0.1070498
```

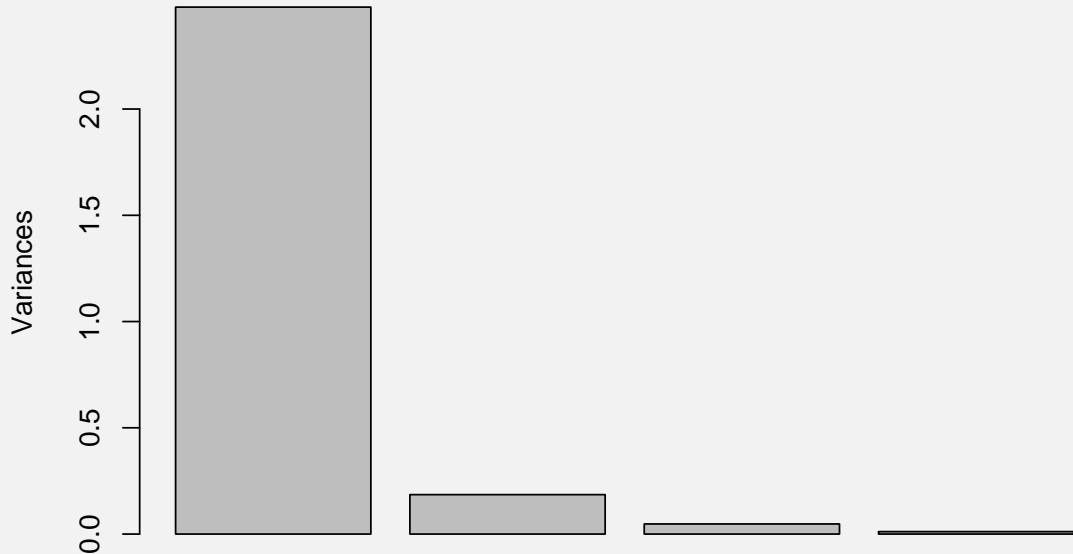
Rotation:

	PC1	PC2	PC3	PC4
zinc	-0.4362357	-0.4786253	0.04790384	0.76047447
lead	-0.3876017	-0.5674372	0.40244994	-0.60482558
cadmium	-0.7577083	0.6410163	0.11615542	-0.03852475
copper	-0.2921326	-0.1950152	-0.90677847	-0.23319613

$$PC_1 \approx -0.43 \log(zn) - 0.38 \log(pb) - 0.75 \log(cd) - 0.29 \log(cu)$$

$$PC_2 \approx -0.47 \log(zn) - 0.56 \log(pb) - 0.64 \log(cd) - 0.19 \log(cu)$$


```
prcomp(log(meuse[c("zinc", "lead", "cadmium", "copper")]))
```



Exploration: Groups

Instead of finding *directions*, i.e. continuous variation, we could also look for discrete structure in the variable space, by ways of **finding groups**. Typically this is done by cluster analysis.

Question:

- ▶ Can we find a set of (n?) groups, that point to distinct behaviour?

Typical problems:

- ▶ How large should n be?
- ▶ How should we measure distances in feature space?
- ▶ What does it *mean*?


```
> kmeans(log(meuse[1:20, c("zinc", "lead", "cadmium", "copper")]),  
+         4)
```

K-means clustering with 4 clusters of sizes 7, 2, 9, 2

Cluster means:

	zinc	lead	cadmium	copper
1	5.815262	4.918431	1.0097533	3.746102
2	5.656175	4.721123	0.6404669	3.257356
3	6.766799	5.402239	2.1974349	4.374412
4	5.225617	4.418187	0.4032379	3.198465

Clustering vector:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	3	3	1	1	1	1	1	1	4	4	2	3	1	2	3	3	3	3	3

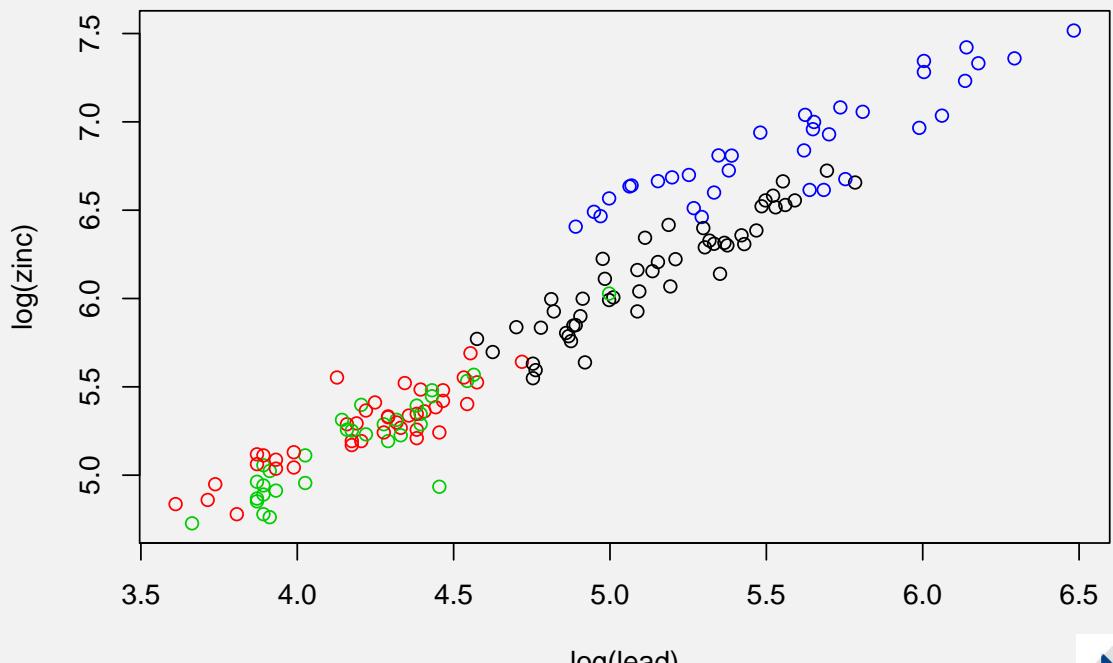
Within cluster sum of squares by cluster:

```
[1] 1.48979892 0.08556131 1.83742203 0.01288405
```

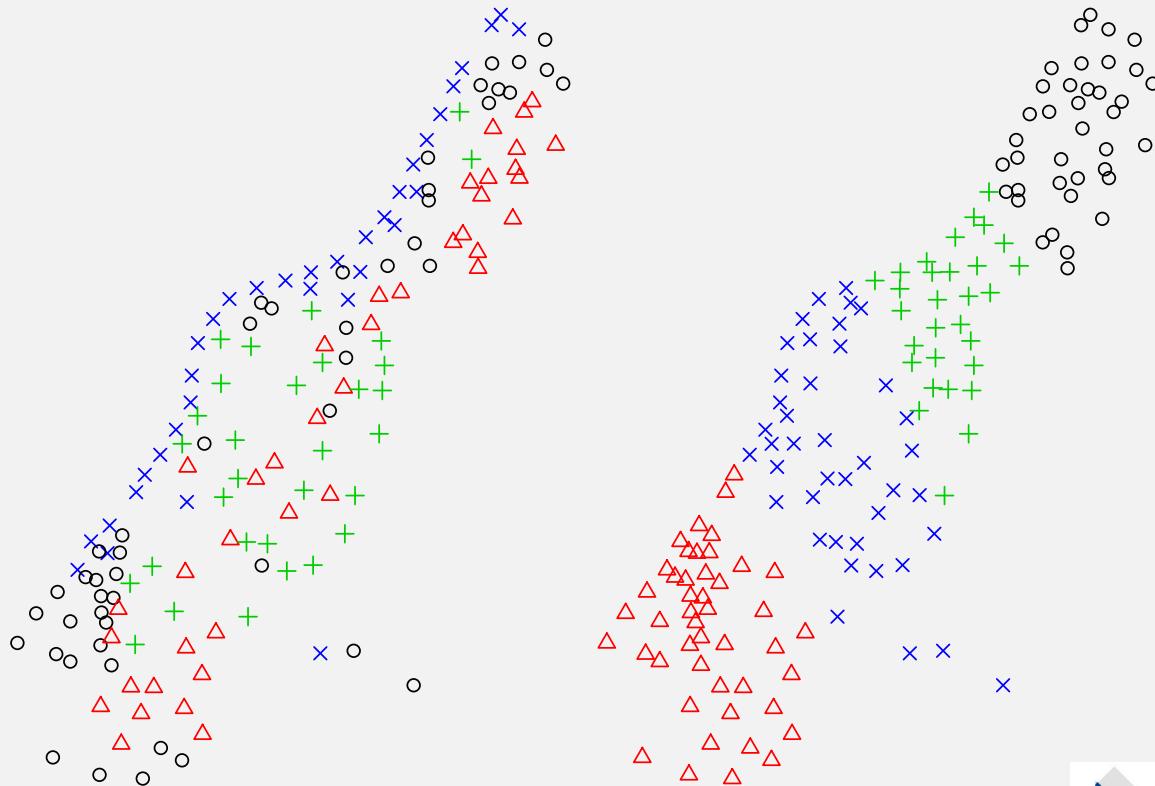
Available components:

```
[1] "cluster" "centers" "withinss" "size"
```


Clusters in feature space:



Clusters in geographical space:



Left: ifgi

based on (log-) heavy metals, right: based on spatial coordinates

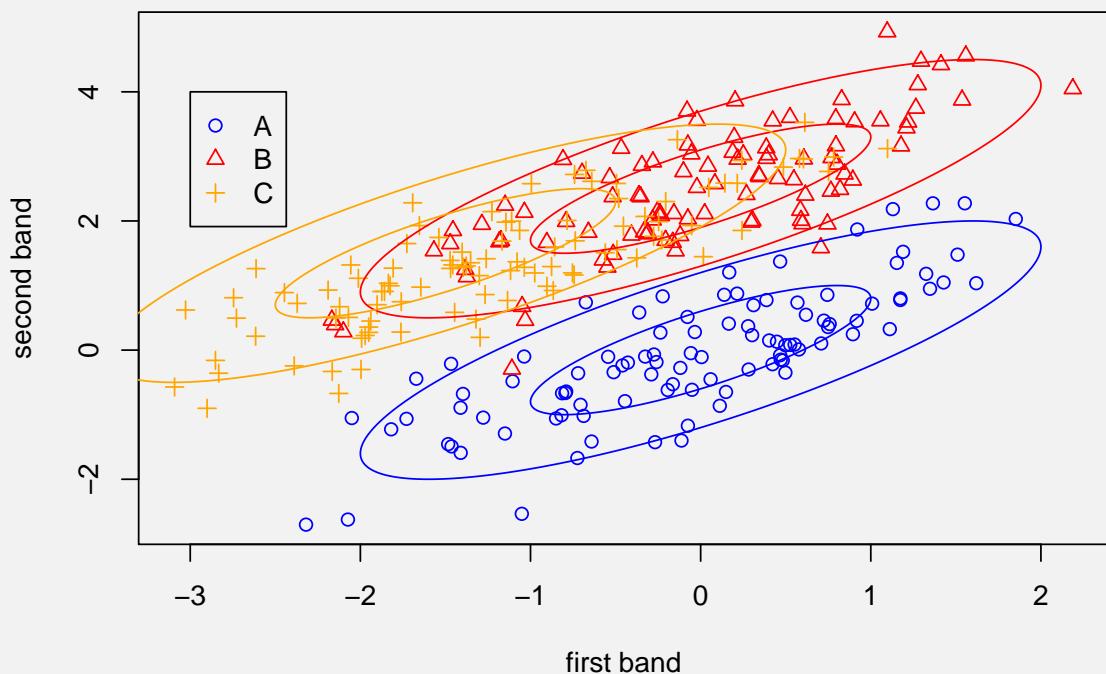
Predicting a group variable

Suppose we have a dependent variable that is categorical, and a set of (discrete or continuous) independent variables, known as map, and we want to map the dependent variable. A prototypical example is land use classification:

- ▶ we have a set of images with reflectances, in different band widths (e.g. panchromatic, R, G, B) or e.g. Landsat (7 bands), Aster (15 bands), or hyperspectral (> 100 bands)
- ▶ we have a set of *ground truth* observations, with known location and known category (land use).

Now, (i) model these data and (ii) predict land use at all locations (image pixels).

ifgi



Discriminant analysis

(In Remote Sensing known as *maximum likelihood classification*)

General idea:

- ▶ elliptical contours are formed from group means and covariances, assuming normal distribution
- ▶ subsequent contours indicate the likelihood that we belong to a certain class
- ▶ a new pixel will be classified to the category for which its membership likelihood is maximized
- ▶ lines can be drawn where the class boundaries take place
- ▶ Here: ellipses have identical shapes and orientation, this can be generalized to group-dependent shape and orientation

Spatial statistics

Geostatistics in the narrow(er) sense considers

- ▶ to which extent observations are correlated in space (“observations near in space tend to be similar”)
- ▶ how we can best use this spatial correlation for spatial prediction (interpolation), and
- ▶ what is the interpolation error

Note that *independence* resulting from simple random sampling **can** coexist with the notion of *spatial dependence*:

1. spatial random sampling: $z(X)$, z non-random, X random
2. geostatistics: $Z(x)$, Z random, x non-random

However, model 1 is not of much use if we want to interpolate, because we do this at non-random locations.

Time series data

Time series analysis typically looks at two aspects:

- ▶ temporal correlation (small time lags typically show small variation)
- ▶ periodicities, because of the periodicity in nature (days, years) and human behaviour (weeks).

Questions addressed are:

- ▶ can we describe the temporal variability with a simple model?
- ▶ (how well) can we predict the future?

Looking back

Much of what we did follows from two questions:

- ▶ What kind of variable(s) are we interested in?
 - ▶ is it one, two, three? relations between them? prediction?
 - ▶ are we interested in location, variability, correlation?
- ▶ What is/are the measurement scale(s) of this/these variable(s)?

The test

Looking at older tests could help, but don't expect much—I did not look at them.

Multiple question, (hopefully) bi-lingual.

Simple calculator recommended.

No R commands will be asked, but statistical output (graphs, text) will be there.

