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Regression prediction, prediction SE

We can make regression predictions, for specific conditions of the
X variables, e.g. for simple linear regression at xp:

%o = Bo + 1o

This prediction has an error, the prediction standard error that we
can retrieve from the analysis; for the mean value it is:
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for a single observation it is:
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Looking forward

We could take this course forward in many ways, notably
» considering more regression extensions,
» looking at multivariate data

» looking at spatial data, temporal data, and spatio-temporal
data.

This will be done to some extent, probably in the analysis of
> species composition (ordination)
> remotes sensing data (multivariate data)
» analysis of e.g. chemical data, or sediment data
» analysis of spatio-temporal data
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Multivariate data

» Looking at the world as either univariate or multivariate,
everything we did starting from correlation and regression,
maybe even the two-sample t-test, is multivariate

» In a more strict sense, or traditionally, multivariate data
analysis looks at multiple dependent variables (i.e., not
regression)

» Typical problems include

1. exploration: what are the structures or patterns in the data?

2. induction: can we test, and infer something about the
population?

3. prediction: can we predict (and map) the variable(s) under
question?
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Exploration: Directions

Exploratory methods usually looks at either ordination or clustering
(finding groups).

Ordination is concerned with finding main directions of variability,
ignoring minor directions:

» Can we summarize or reduce the data set to a small (1-3)
number of independent variables, with a minimum loss of
information?
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Principal component analysis

> prcomp(log(meuse[c("zinc", "lead", "cadmium", "copper")]))

Standard deviations:
[1] 1.5746879 0.4307029 0.2181036 0.1070498

Rotation:

PC1 PC2 PC3 PC4
zinc -0.4362357 -0.4786253 0.04790384 0.76047447
lead -0.3876017 -0.5674372 0.40244994 -0.60482558

cadmium -0.7577083 0.6410163 0.11615542 -0.03852475
copper -0.2921326 -0.1950152 -0.90677847 -0.23319613

PCy ~ —0.43log(zn) — 0.38log(pb) — 0.75 log(cd) — 0.29 log(cu)
PC, ~ —0.47 log(zn) — 0.56 log(pb)0.64 log(cd) — 0.19 log(cu)
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prcomp(log(meuse[c("zinc", "lead", "cadmium”, "copper")]))
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Exploration: Groups

Instead of finding directions, i.e. continuous variation, we could
also look for discrete structure in the variable space, by ways of
finding groups. Typically this is done by cluster analysis.
Question:

» Can we find a set of (n?) groups, that point to distinct
behaviour?

Typical problems:
» How large should n be?
» How should we measure distances in feature space?

» What does it mean?
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> kmeans (log(meuse[1:20, c("zinc", "lead", "cadmium", "copper")]),
+ 4)

K-means clustering with 4 clusters of sizes 7, 2, 9, 2

Cluster means:
zinc lead cadmium  copper

1 5.815262 4.918431 1.0097533 3.746102
2 5.656175 4.721123 0.6404669 3.257356
3 6.766799 5.402239 2.1974349 4.374412
4 5.225617 4.418187 0.4032379 3.198465
Clustering vector:

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
3 3 3111111 4 4 2 3 1 2 3 3 3 3 3

Within cluster sum of squares by cluster:
[1] 1.48979892 0.08556131 1.83742203 0.01288405

Available components:

n n n n n 4 2 n n 2 n
[1] "cluster centers withinss size \ ifgi

Clusters in feature space:
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Clusters in geographical space:
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based on (log-) heavy metals, right: based on spatial coordinates

Predicting a group variable

Suppose we have a dependent variable that is categorical, and a
set of (discrete or continuous) independent variables, known as
map, and we want to map the dependent variable. A prototypical
example is land use classification:

» we have a set of images with reflectances, in different band
widths (e.g. panchromatic, R, G, B) or e.g. Landsat (7
bands), Aster (15 bands), or hyperspectral (> 100 bands)

» we have a set of ground truth observations, with known
location and known category (land use).

Now, (i) model these data and (ii) predict land use at all locations
(image pixels).
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Discriminant analysis

(In Remote Sensing known as maximum likelihood classification)
General idea:

» elliptical contours are formed from group means and
covariances, assuming normal distribution

» subsequent contours indicate the likelihood that we belong to
a certain class

» a new pixel will be classified to the category for which its
membership likelihood is maximized

lines can be drawn where the class boundaries take place

» Here: ellipses have identical shapes and orientation, this can
be generalized to group-dependent shape and orientation
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Spatial statistics

Geostatistics in the narrow(er) sense considers

» to which extent observations are correlated in space
(“observations near in space tend to be similar”)

» how we can best use this spatial correlation for spatial
prediction (interpolation), and

» what is the interpolation error

Note that independence resulting from simple random sampling
can coexist with the notion of spatial dependence:

1. spatial random sampling: z(X), z non-random, X random
2. geostatistics: Z(x), Z random, x non-random

However, model 1 is not of much use if we want to interpolate,
because we do this at non-random locations.
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Time series data

Time series analysis typically looks at two aspects:

» temporal correlation (small time lags typically show small
variation)

» periodicities, because of the periodicity in nature (days, years)
and human behaviour (weeks).

Questions addressed are:
» can we describe the temporal variability with a simple model?

> (how well) can we predict the future?
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Looking back

Much of what we did follows from two questions:
» What kind of variable(s) are we interested in?
> is it one, two, three? relations between them? prediction?
» are we interested in location, variability, correlation?
» What is/are the measurement scale(s) of this/these
variable(s)?
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The test

Looking at older tests could help, but don't expect much—I did
not look at them.

Multiple question, (hopefully) bi-lingual.

Simple calculator recommended.

No R commands will be asked, but statistical output (graphs, text)
will be there.
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