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Correlation and regression

t-tests and analysis of variance look at how a single continuous
variable depends on a categorical variable with two levels (t-test),
more levels (one-way anova), or on more categorical variables
(more-way anova).

The focus now shifts to the relation between two (or more)
continuous variables. We start with how one continuous variable
depends on another dependent variable.

5 ifgi

4



sample and population correlation

We can compute sample correlation,
> cor(Length, Weight)

[1] 0.6797413

but also test whether the population correlation (p) has a certain
value. Typically, Hy : p = 0.

> cor.test (Length, Weight)

Pearson's product-moment correlation

data: Length and Weight
t = 8.494, df = 84, p-value = 6.19e-13
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.5465855 0.7793713
sample estimates:
cor

0.6797413
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correlation: symmetry

As can be glanced from the equation how to compute correlation,

Cov(X,Y)
v/ Var(X)Var(Y)

it is true that r(x,y) = r(y, x). Indeed,
> cor(Length, Weight)

r(X,Y) =

[1] 0.6797413
> cor(Weight, Length)

[1] 0.6797413

5 ifgi

4



Linear regression

Regression looks at asymmetric problems, where one variable
depends on another. E.g. in simple linear regression, for n
observations y;, i =1,...,n:

yi = Bo + Pixi + €

with e a zero-mean random variable, Sy and (31 unknown but
non-random population parameters, and X known. So,

E(yi) = Bo + fixi

As e is random, it means that y is random as well, whereas x is
not.
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A test the regression slope

The typical problem in looking at linear relationships between two
continuous variables, is to ask oneself whether one variable
depends on the other. Dependence is a rather broad concept, and
can have many forms. We usually first look at whether one
variable linearly depends on the other, as in

Yi = Bo+ Bixi + e

If this dependence is not the case, then B; = 0. So, this is the
typical Hp for this kind of test.
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How to estimate the parameters?

Under the assumptions that

(i) the observations are independent (and consequently the ¢; are
independent) and

the best estimates for Jy and 31 are obtained by minimizing the
sum of squared regression residuals, > .7 ; e,-2: and are

5 = Sl =) =)
> (xi = x)?

~

Bo =7y — ix
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How to estimate the parameters?

Under the assumptions that
(i) the observations are independent (and consequently the ¢; are
independent) and
(i) that the variance of e; is constant,

the best estimates for Gy and 31 are obtained by minimizing the
sum of squared regression residuals, > .7 ; e,-2: and are

5 = Sl =) =)
> (xi = x)?

~

Bo =7y — %
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Let's do it (with R) — 1

> 1m(Weight ~ Length)

Call:
Im(formula = Weight ~ Length)

Coefficients:
(Intercept) Length
-145.998 1.222

The intercept refers to the value of y when x is zero, the value
called Length to the regression coefficient that belongs to variable
Length. Thus, the equation for the regression line is:

E(Weight) = —145.998 + 1.222 Length

5 ifgi

4



Let's do it (with R) — 2

> summary(1lm(Weight ~ Length))

Call:
Im(formula = Weight ~ Length)

Residuals:
Min 1Q Median 3Q Max
-18.555 -9.143 -2.674 5.003 77.239

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -145.9984 25.6926 -5.683 1.87e-07 **x
Length 1.2216 0.1438 8.494 6.19e-13 **x

Signif. codes: 0O ‘**x’ 0.001 ‘*%’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 15.38 on 84 degrees of freedom
Multiple R-squared: 0.462, Adjusted R-squared: 0.4556

F-statistic: 72.15 on 1 and 84 DF, p-value: 6.19e-13 N ifgi
<



A model for the data

For each data point y;, we can decompose the difference from the
mean of y, y as

Yi—-y=Wi—-9)+@-7)
As the two right-hand side terms are independent, we can write
this as
Vi—-9)2=Wi—-9)?+-7)?
and summed over all measurements:

55tot = SSresid + SSreg

> summary (aov(Weight ~ Length))

Df Sum Sq Mean Sq F value Pr(>F)
Length 1 17071.2 17071.2 72.148 6.19e-13 *x*x*
Residuals 84 19875.6 236.6
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» Residual standard error: 15.38: this is the square-root
of MS Residuals (236.6)
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» Residual standard error: 15.38: this is the square-root
of MS Residuals (236.6)

» on 84 degrees of freedom: n— 2 (two coefficients were
estimated: (p and (31, to obtain residuals)
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» Residual standard error: 15.38: this is the square-root
of MS Residuals (236.6)

» on 84 degrees of freedom: n— 2 (two coefficients were
estimated: [y and (31, to obtain residuals)

> Multiple R-squared: 0.462 this is 5Se5/SSt0t, a

measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit
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Residual standard error: 15.38: this is the square-root
of MS Residuals (236.6)

on 84 degrees of freedom: n— 2 (two coefficients were
estimated: [y and (31, to obtain residuals)

Multiple R-squared: 0.462 thisis SSsez/SStot, @
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit

» Adjusted R-squared: 0.4556 forget for now
» F-statistic: 72.15 on 1 and 84 DF the ration of the

mean squares (MSeg/ MSyesid)

p-value: 6.19e-1 the p-value of the test for the slope, on
Hg : 61 =0
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Diagnostic plots, 1

> plot(lm(Weight ~ Length), which = 1)

Residuals vs Fitted
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Diagnostic plots, 2

> plot(lm(Weight ~ Length), which = 2)
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Diagnostic plots, 3

> plot(lm(Weight ~ Length), which = 3)
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