

# Introduction to Geostatistics

## 10. Correlation and regression

Edzer J. Pebesma

[edzer.pebesma@uni-muenster.de](mailto:edzer.pebesma@uni-muenster.de)  
Institute for Geoinformatics (**ifgi**)  
University of Münster

summer semester 2007/8,  
June 12, 2008

# Correlation and regression

t-tests and analysis of variance look at how a single continuous variable depends on a categorical variable with two levels (t-test), more levels (one-way anova), or on more categorical variables (more-way anova).

The focus now shifts to the relation between two (or more) **continuous** variables. We start with how one continuous variable depends on another dependent variable.

## sample and population correlation

We can compute sample correlation,

```
> cor(Length, Weight)
```

```
[1] 0.6797413
```

but also test whether the population correlation ( $\rho$ ) has a certain value. Typically,  $H_0 : \rho = 0$ .

```
> cor.test(Length, Weight)
```

Pearson's product-moment correlation

```
data: Length and Weight
```

```
t = 8.494, df = 84, p-value = 6.19e-13
```

```
alternative hypothesis: true correlation is not equal to 0
```

```
95 percent confidence interval:
```

```
 0.5465855 0.7793713
```

```
sample estimates:
```

```
  cor
```

```
 0.6797413
```

## correlation: symmetry

As can be glanced from the equation how to compute correlation,

$$r(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

it is true that  $r(x, y) = r(y, x)$ . Indeed,

```
> cor(Length, Weight)
```

```
[1] 0.6797413
```

```
> cor(Weight, Length)
```

```
[1] 0.6797413
```

## Linear regression

Regression looks at asymmetric problems, where one variable depends on another. E.g. in simple linear regression, for  $n$  observations  $y_i$ ,  $i = 1, \dots, n$ :

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

with  $e$  a zero-mean random variable,  $\beta_0$  and  $\beta_1$  unknown but non-random population parameters, and  $X$  known. So,

$$E(y_i) = \beta_0 + \beta_1 x_i$$

As  $e$  is random, it means that  $y$  is random as well, whereas  $x$  is not.

## A test the regression slope

The typical problem in looking at linear relationships between two continuous variables, is to ask oneself whether one variable depends on the other. Dependence is a rather broad concept, and can have many forms. We usually first look at whether one variable **linearly** depends on the other, as in

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

If this dependence is not the case, then  $\beta_1 = 0$ . So, this is the typical  $H_0$  for this kind of test.

## How to estimate the parameters?

Under the assumptions that

- (i) the observations are independent (and consequently the  $e_i$  are independent) and
- (ii) that the variance of  $e_i$  is constant,

the best estimates for  $\beta_0$  and  $\beta_1$  are obtained by minimizing the sum of squared regression residuals,  $\sum_{i=1}^n e_i^2$ : and are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

## How to estimate the parameters?

Under the assumptions that

- (i) the observations are independent (and consequently the  $e_i$  are independent) and
- (ii) that the variance of  $e_i$  is constant,

the best estimates for  $\beta_0$  and  $\beta_1$  are obtained by minimizing the sum of squared regression residuals,  $\sum_{i=1}^n e_i^2$ : and are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

## Let's do it (with R) – 1

```
> lm(Weight ~ Length)
```

Call:

```
lm(formula = Weight ~ Length)
```

Coefficients:

| (Intercept) | Length |
|-------------|--------|
| -145.998    | 1.222  |

The intercept refers to the value of  $y$  when  $x$  is zero, the value called Length to the regression coefficient that belongs to variable Length. Thus, the equation for the regression line is:

$$E(Weight) = -145.998 + 1.222 \text{ Length}$$

```
>
```

## Let's do it (with R) – 2

```
> summary(lm(Weight ~ Length))
```

Call:

```
lm(formula = Weight ~ Length)
```

Residuals:

| Min     | 1Q     | Median | 3Q    | Max    |
|---------|--------|--------|-------|--------|
| -18.555 | -9.143 | -2.674 | 5.003 | 77.239 |

Coefficients:

|                | Estimate  | Std. Error | t value  | Pr(> t )     |         |   |
|----------------|-----------|------------|----------|--------------|---------|---|
| (Intercept)    | -145.9984 | 25.6926    | -5.683   | 1.87e-07 *** |         |   |
| Length         | 1.2216    | 0.1438     | 8.494    | 6.19e-13 *** |         |   |
| ---            |           |            |          |              |         |   |
| Signif. codes: | 0 ‘***’   | 0.001 ‘**’ | 0.01 ‘*’ | 0.05 ‘.’     | 0.1 ‘ ’ | 1 |

Residual standard error: 15.38 on 84 degrees of freedom

Multiple R-squared: 0.462, Adjusted R-squared: 0.4556

F-statistic: 72.15 on 1 and 84 DF, p-value: 6.19e-13

## A model for the data

For each data point  $y_i$ , we can decompose the difference from the mean of  $y$ ,  $\bar{y}$  as

$$y_i - \bar{y} = (y_i - \hat{y}) + (\hat{y} - \bar{y})$$

As the two right-hand side terms are independent, we can write this as

$$(y_i - \bar{y})^2 = (y_i - \hat{y})^2 + (\hat{y} - \bar{y})^2$$

and summed over all measurements:

$$SS_{tot} = SS_{resid} + SS_{reg}$$

```
> summary(aov(Weight ~ Length))
```

|                | Df | Sum Sq  | Mean Sq | F value | Pr(>F)       |
|----------------|----|---------|---------|---------|--------------|
| Length         | 1  | 17071.2 | 17071.2 | 72.148  | 6.19e-13 *** |
| Residuals      | 84 | 19875.6 | 236.6   |         |              |
| ---            |    |         |         |         |              |
| Signif. codes: | 0  | ***     | 0.001   | **      | 0.01 *       |
|                |    |         |         | 0.05 .  | 0.1 ' '      |
|                |    |         |         | 1       |              |

- ▶ **Residual standard error:** 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ **Multiple R-squared:** 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ **Adjusted R-squared:** 0.4556 forget for now
- ▶ **F-statistic:** 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ **p-value:** 6.19e-1 the p-value of the test for the slope, on  $H_0: \beta_1 = 0$

- ▶ Residual standard error: 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ Multiple R-squared: 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4556 forget for now
- ▶ F-statistic: 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ p-value: 6.19e-1 the p-value of the test for the slope, on  $H_0: \beta_1 = 0$

- ▶ Residual standard error: 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ Multiple R-squared: 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4556 forget for now
- ▶ F-statistic: 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ p-value: 6.19e-1 the p-value of the test for the slope, on  $H_0: \beta_1 = 0$

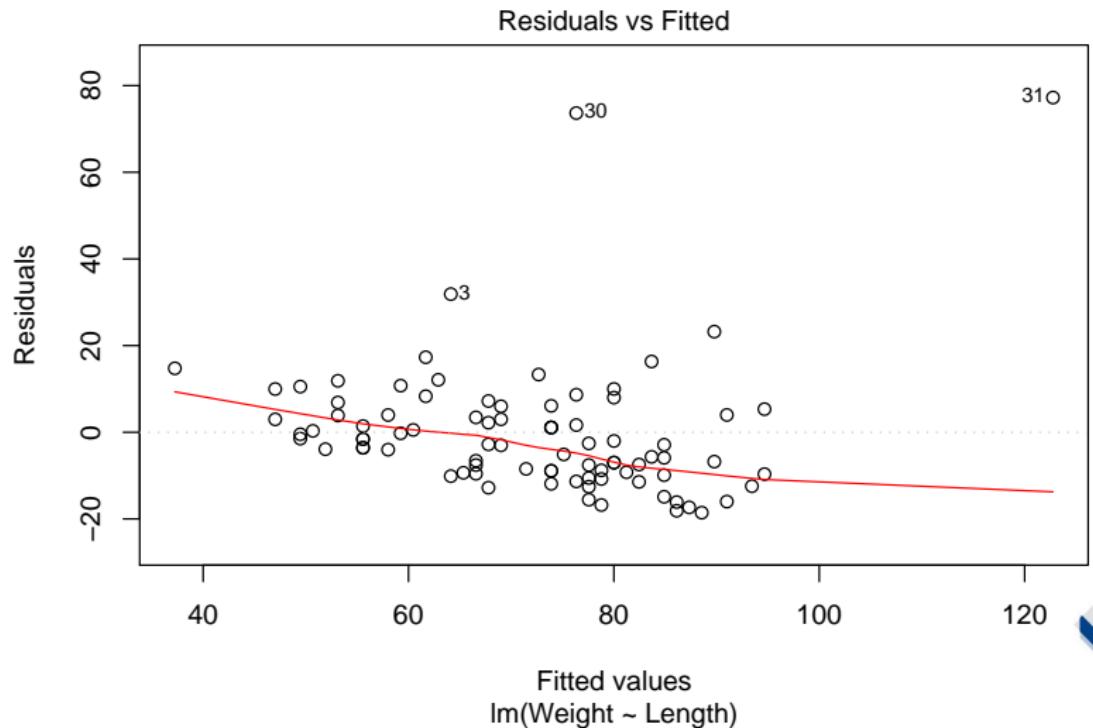
- ▶ Residual standard error: 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ Multiple R-squared: 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4556 forget for now
- ▶ F-statistic: 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ p-value: 6.19e-1 the p-value of the test for the slope, on  $H_0: \beta_1 = 0$

- ▶ Residual standard error: 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ Multiple R-squared: 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4556 forget for now
- ▶ F-statistic: 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ p-value: 6.19e-1 the p-value of the test for the slope, on  $H_0: \beta_1 = 0$

- ▶ Residual standard error: 15.38: this is the square-root of MS Residuals (236.6)
- ▶ on 84 degrees of freedom:  $n - 2$  (two coefficients were estimated:  $\beta_0$  and  $\beta_1$ , to obtain residuals)
- ▶ Multiple R-squared: 0.462 this is  $SS_{reg}/SS_{tot}$ , a measure between 0 and 1, where 1 indicates a perfect fit, 0 absence of fit
- ▶ Adjusted R-squared: 0.4556 forget for now
- ▶ F-statistic: 72.15 on 1 and 84 DF the ration of the mean squares ( $MS_{reg}/MS_{resid}$ )
- ▶ p-value: 6.19e-1 the p-value of the test for the slope, on  $H_0 : \beta_1 = 0$

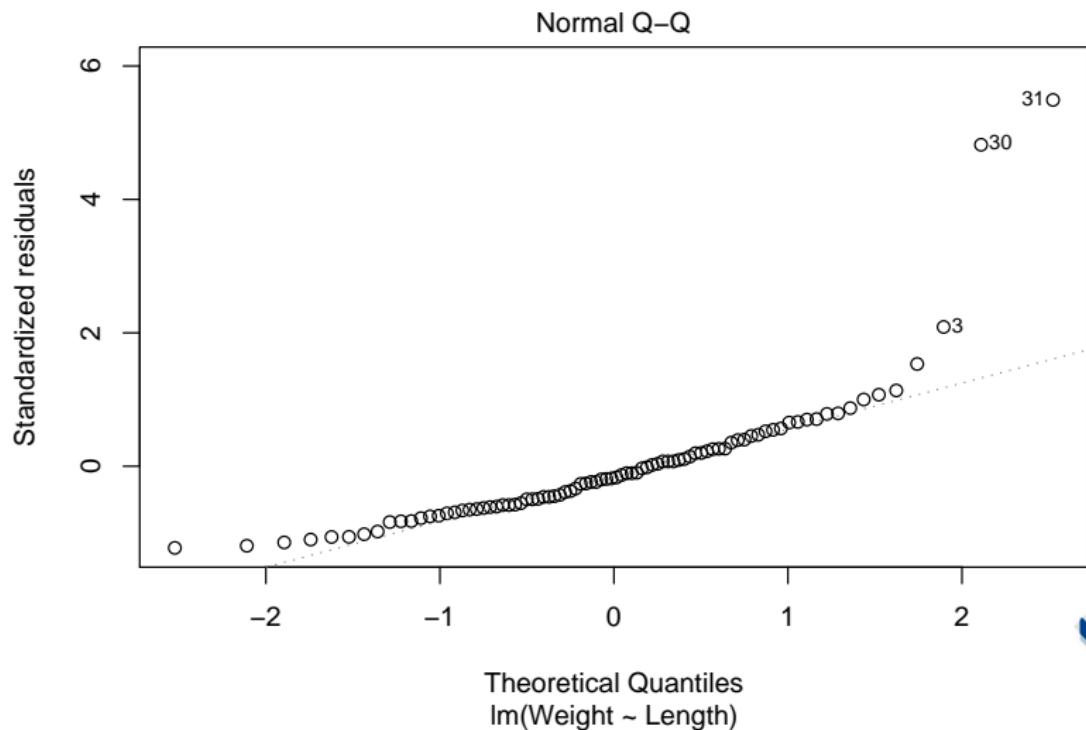
# Diagnostic plots, 1

```
> plot(lm(Weight ~ Length), which = 1)
```



## Diagnostic plots, 2

```
> plot(lm(Weight ~ Length), which = 2)
```



## Diagnostic plots, 3

```
> plot(lm(Weight ~ Length), which = 3)
```

