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Correlation and regression

t-tests and analysis of variance look at how a single continuous
variable depends on a categorical variable with two levels (t-test),
more levels (one-way anova), or on more categorical variables
(more-way anova).
The focus now shifts to the relation between two (or more)
continuous variables. We start with how one continuous variable
depends on another dependent variable.



sample and population correlation

We can compute sample correlation,

> cor(Length, Weight)

[1] 0.6797413

but also test whether the population correlation (ρ) has a certain
value. Typically, H0 : ρ = 0.

> cor.test(Length, Weight)

Pearson's product-moment correlation

data: Length and Weight

t = 8.494, df = 84, p-value = 6.19e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5465855 0.7793713

sample estimates:

cor

0.6797413



correlation: symmetry

As can be glanced from the equation how to compute correlation,

r(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )

it is true that r(x , y) = r(y , x). Indeed,

> cor(Length, Weight)

[1] 0.6797413

> cor(Weight, Length)

[1] 0.6797413



Linear regression

Regression looks at asymmetric problems, where one variable
depends on another. E.g. in simple linear regression, for n
observations yi , i = 1, ..., n:

yi = β0 + β1xi + ei

with e a zero-mean random variable, β0 and β1 unknown but
non-random population parameters, and X known. So,

E(yi ) = β0 + β1xi

As e is random, it means that y is random as well, whereas x is
not.



A test the regression slope

The typical problem in looking at linear relationships between two
continuous variables, is to ask oneself whether one variable
depends on the other. Dependence is a rather broad concept, and
can have many forms. We usually first look at whether one
variable linearly depends on the other, as in

yi = β0 + β1xi + ei

If this dependence is not the case, then β1 = 0. So, this is the
typical H0 for this kind of test.



How to estimate the parameters?

Under the assumptions that

(i) the observations are independent (and consequently the ei are
independent) and

(ii) that the variance of ei is constant,

the best estimates for β0 and β1 are obtained by minimizing the
sum of squared regression residuals,

∑n
i=1 e2

i : and are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄
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Let’s do it (with R) – 1

> lm(Weight ~ Length)

Call:

lm(formula = Weight ~ Length)

Coefficients:

(Intercept) Length

-145.998 1.222

The intercept refers to the value of y when x is zero, the value
called Length to the regression coefficient that belongs to variable
Length. Thus, the equation for the regression line is:

E(Weight) = −145.998 + 1.222 Length

>



Let’s do it (with R) – 2

> summary(lm(Weight ~ Length))

Call:

lm(formula = Weight ~ Length)

Residuals:

Min 1Q Median 3Q Max

-18.555 -9.143 -2.674 5.003 77.239

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -145.9984 25.6926 -5.683 1.87e-07 ***

Length 1.2216 0.1438 8.494 6.19e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.38 on 84 degrees of freedom

Multiple R-squared: 0.462, Adjusted R-squared: 0.4556

F-statistic: 72.15 on 1 and 84 DF, p-value: 6.19e-13



A model for the data
For each data point yi , we can decompose the difference from the
mean of y , ȳ as

yi − ȳ = (yi − ŷ) + (ŷ − ȳ)

As the two right-hand side terms are independent, we can write
this as

(yi − ȳ)2 = (yi − ŷ)2 + (ŷ − ȳ)2

and summed over all measurements:

SStot = SSresid + SSreg

> summary(aov(Weight ~ Length))

Df Sum Sq Mean Sq F value Pr(>F)

Length 1 17071.2 17071.2 72.148 6.19e-13 ***

Residuals 84 19875.6 236.6

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



I Residual standard error: 15.38: this is the square-root
of MS Residuals (236.6)

I on 84 degrees of freedom: n − 2 (two coefficients were
estimated: β0 and β1, to obtain residuals)

I Multiple R-squared: 0.462 this is SSreg/SStot , a
measure between 0 and 1, where 1 indicates a perfect fit, 0
absence of fit

I Adjusted R-squared: 0.4556 forget for now

I F-statistic: 72.15 on 1 and 84 DF the ration of the
mean squares (MSreg/MSresid)

I p-value: 6.19e-1 the p-value of the test for the slope, on
H0 : β1 = 0
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Diagnostic plots, 1

> plot(lm(Weight ~ Length), which = 1)

40 60 80 100 120

−
20

0
20

40
60

80

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●●

● ●

●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●
●

● ●

●

●●

●

●

●

●

●

lm(Weight ~ Length)

Residuals vs Fitted

31
30

3



Diagnostic plots, 2

> plot(lm(Weight ~ Length), which = 2)
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Diagnostic plots, 3

> plot(lm(Weight ~ Length), which = 3)
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